版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学必求其心得,业必贵于专精第九单元 解三角形注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2b铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1在中,下列等式总能成立的是( )abcd2在中,“”是“”的
2、( )a充分不必要条件b必要不充分条件c充要条件d既不充分也不必要条件3在中,若,,,则角的大小为( )abcd或4在中,,且,则的面积是( )a6bc3d5在中,,,则的周长为( )abcd6在中,、分别是三内角、的对边,为三角形的面积,已知,则( )abcd7台风中心从地以每小时千米的速度向东北方向移动,离台风中心千米内的地区为危险区,城市在的正东千米处,城市处于危险区内的持续时间为( )a小时b1小时c小时d2小时8在中,则的取值范围是( )abcd9在中,满足,则是( )a等边三角形b等腰三角形c直角三角形d等腰或直角三角形10某人要制作一个三角形,要求它的三条高的长度分别为,,则此人
3、( )a不能做出这样的三角形b能做出一个锐角三角形c能做出一个直角三角形d能做出一个钝角三角形11已知锐角是的一个内角,,是三边,若,则有( )abcd12在中,,且,则的取值范围为( )abcd二、填空题(本大题有4小题,每小题5分,共20分请把答案填在题中横线上)13已知中,若,则 14设,为钝角三角形的三边,那么的取值范围是 15在中,、分别是三内角、的对边,且满足,,则 16在中,已知且,,所对的边为、,又、成等差数列且,则= 三、解答题(本大题有6小题,共70分解答应写出文字说明、证明过程或演算步骤)17(10分)在中,分别是角,的对边,,(1)求的面积;(2)若,求角18(12分)
4、如图,是海面上位于东西方向相距海里的两个观测点,现位于点北偏东,点北偏西的点有一艘轮船发出求救信号,位于点南偏西且与点相距海里的点的救援船立即前往营救,其航行速度为海里/小时,该求援船到达点需要多长时间?19(12分)在中,,,分别为内角,的对边,且(1)求角的大小;(2)若,试判断的形状20(12分)在中,设内角,,的对边为,向量,,(1)判定的形状;(2)若,,求的外接圆与内切圆的面积比21(12分)在中,内角、的对边长分别为、,且(1)求,(2)若,,求在上的投影22(12分)在一个特定时段内,以点为中心的海里以内海域被设为警戒水域点正北海里处有一个雷达观测站某时刻测得一艘匀速直线行驶的
5、船只位于点北偏东且与点相距海里的位置,经过分钟又测得该船已行驶到点北偏东(其中,)且与点相距其中海里的位置(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶判断它是否会进入警戒水域,并说明由5教育单元训练金卷高三数学卷答案(b)第九单元 解三角形一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1【答案】c【解析】由正弦定理可得,故选c2【答案】b【解析】由,且a为为三角形的内角,或,故选b3【答案】b【解析】由正弦定理得,,即,故选b4【答案】c【解析】设,,,,故选c5【答案】d【解析】用特例法取验证即可;或
6、由正弦定理,可求得,故选d6【答案】b【解析】,又,由余弦定理知,,即,解得或(舍去),故选b7【答案】b【解析】设小时后,b城市处于危险区内,则有余弦定理得:化简得:,从而,故选b8【答案】c【解析】,由正弦定理得,即,,即,是三角形的内角,,故选c9【答案】d【解析】由余弦定理得,,整理得或,故选d10【答案】d【解析】假设能做出,设的面积为s,则三条高,对应的边分别为,由余弦定理得,,为钝角,故选d11【答案】c【解析】,,又为锐角,,由余弦定理,得,即,故选c12【答案】c【解析】,,,故选c二、填空题(本大题有4小题,每小题5分,共20分请把答案填在题中横线上)13【答案】1【解析】
7、,14【答案】【解析】,最大边为,对的角为钝角,解得又,15【答案】【解析】,则,又,或,故,16【答案】【解析】由且得,又,又,解得,或,,,故三、解答题(本大题有6小题,共70分解答应写出文字说明、证明过程或演算步骤)17【答案】(1)14;(2)【解析】(1),(2),,,由余弦定理得,,由正弦定理:,且为锐角,一定是锐角,18【答案】1小时【解析】由题意知,,在中,有,又,因为求援船的航行速度为海里/小时,所以求援船到达点需要小时19【答案】)(1);(2)正三角形【解析】(1)因为,由正弦定理得,即,(2),由,得,即,,,所以为正三角形20【答案】(1)直角三角形;(2)【解析】(1)且,,即,即,为的内角,,故为直角三角形(2)由(1)知,又,,;外圆的半径,内切圆的半径,面积比为21【答案】(1);(2)【解析】(1),,由正弦定理得,即,,,(2)由正弦定理得,,,为钝角,为锐角,由余弦定理得,把,代入,解得所以在上的投影为22【答案】(1)(海里/小时);(2)会,见解析【解析】(1)如图,,其中,由于,所以,由余弦定理得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 讲师课件教学课件
- 高中生未来的规划
- 世界知名产业园介绍经典案例
- 2010年影视经典营销案例分析报告
- 修理业职业生涯规划
- 想做教师的职业生涯规划
- 七年级猫的教案教学课件教学课件教学
- 咪咪猫小班课件
- ICU卧床病人的护理措施
- 护理学职业生涯规划
- 2024-2025学年统编版道德与法治八年级上册 10.1 关心国家发展 课件(48张)
- Module 9 Unit 2 She was very happy (说课稿)-2024-2025学年外研版(一起)英语五年级上册
- 袁隆平简介大学课件
- 《GMP自检概述》课件
- 老年病科专科特色建设
- 2024年阜阳阜南县赵集镇招考村级后备干部管理单位遴选500模拟题附带答案详解
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 35kv线路保护设计(共13页)
- 铝酸钙代替石灰拜耳法溶出的提案
- 起重机传动装置的设计
评论
0/150
提交评论