基于模糊控制算法电机软起动仿真_第1页
基于模糊控制算法电机软起动仿真_第2页
基于模糊控制算法电机软起动仿真_第3页
基于模糊控制算法电机软起动仿真_第4页
基于模糊控制算法电机软起动仿真_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目录1 异步电机的工作原理及传统软启动方式1.1异步电机的工作原理电动机工作原理为:当电动机的三项定子绕组(各相差120度电角度),通入三项交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。异步电动机定子上有三相对称的交流绕组;三相对称交流绕组通入三相对称交流电时,就产生了一个同步转速n1,沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。由于旋转磁场以n1转速旋转,转子导体开始时是静止的,转子绕组的导体处于旋转

2、磁场中;转子导体切割磁力线,并产生感应电势。由于导子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子 沿着旋转磁场方向旋转。 切割磁力线是产生转子感应电流和电磁转矩的必要条件,转子必须与现转磁场保持一定的速度差,才可能切割磁力线。1.2传统软启动方式降压启动的目的是减小启动电流,但它同时也使启动转矩下降.对于重载启动,带有大的峰值负载的生产机械,就不能用这种方式启动。 传统的降压启动有以下几种方法 : (1) 星形/三角形转换器:这种方法适用

3、于正常运行时定子绕组采用接法的电动机。定子有6个接头引出,接到转换开关上,启动时采用星形接法,启动完毕后再切换成接法。启动电压较运行电压降低了3倍。这种启动设备的优点是启动设备简单,启动过程中消耗能量少。 (2) 自耦变压器降压启动:自耦变压器高压边接电网,低压边接电动机,一般有几个分接头,可选择不同的电压比,相对于不同启动转矩的负载,在电动机启动后再将其切除。其优点是启动电压可以选择,如0.65,0.8或0.9UN,以适应不同负载的要求。缺点是体积大,重量重,且要消耗较多有色金属,故障率高,维修费用高。 (3) 磁控软启动器:磁控软启动器是利用控磁限幅调压的原理,在电动机启动过程中电压可由一

4、个较低的值平滑地上升到全压,使电动机轴上的转矩匀速增加,启动特性变软,并可实现软停车。但其起控电压在200V左右,用户不可调整,会有较大的电流冲击,且体积较大。 (4) 串联电抗器:对于高压电机,可在定子线路中串联电抗器或水电阻实现降压启动,待启动完成后再将其切除。但电抗器成本高。 (5) 串接频敏变阻器:对于绕线式异步电动机,可在转子绕组串接频敏变阻器启动,待启动完成后再将其切除,但频敏变阻器成本高。(6)电解液液阻限流的软启动:液阻是一种由电解液形成的电阻,它导电的本质是离子导电。其阻值正比于二块电极板的距离,反比于电解液的电导率,极板距离和电导率都便于控制,且液阻的热容量大。液阻的这两大

5、特点(阻值可以无级控制和热容量大),恰恰是软启动所需要的,加上另一个十分重要的优势即低成本,使液阻软启动得到了广泛的应用。但基于液阻限流,液阻箱容积大,且一次软启动后电解液通常会有1030的温升,使软启动的重复性差;移动极板需要有一套伺服机构,移动速度较慢,难以实现启动方式的多样化;液阻软启动装置液箱中的水,需要定期补充。电极板长期浸泡于电解液中,表面会有一定的锈蚀,需要作表面处理(一般23次/年);液阻软启动装置不适合放置在易结冰或颠簸的环境中。2 电机软启动2.1晶闸管软启动器的性能(1)、晶闸管软启动装置采用电力电子集成电路,由PLC或单片机数字控制的调压(电流)节能的电机软启动设备。它

6、主要是串接在电机电源回路中,实时控制电动机的启动电压或电流,由此起到调整电机的启动力矩,实现电机的软启动。电子软启动可以满足电动机软启动、软停机及运行过程中功率因数自动调节。 一般的电子软启动器都适用于三相220V 660V电压等级,具有比较完善的故障检测功能,能在运行过程中检测任何异常状态,并通过不同的指示灯显示各类故障,配套相应的晶闸管主回路及RC吸收单元可组成一高性能的电动机软启动控制器,并能适用于任何负载场合的电动机的控制。它是接在三相交流电源与三相交流电动机之间的电力电子装置。(2)、晶闸管软启动的技术性能主要包括:一是根据电机的硬性特性的要求,可分别独立设定电机的软启动、软停机时间

7、;二是实现运行过程中的功率因数自动追踪调节功能,使;三是适用主回路电压:三相220V690V AC 50 /60HZ自动选择相序自动检测;四是一次系统的电压和电流及功率因数的控制是采用数字脉冲,二次控制系统为集成数字控制设备,耗电低。 (3)、晶闸管软启动的启动方式:根据电机不同负载的要求晶闸管启动器一般都具备以下三种启动方式:电压控制启动方式、限流启动方式、转矩加脉冲突跳启动方式。 (4)、晶闸管软启动系统的运行方式分为:节能运行方式、全压运行方式、接触器旁路运行方式。2.2电动机软启动器的几种启动方式(1)斜坡电压软启动早期的软启动器是以启动电压为控制对象进行软启动的。tU0Us图2.1

8、斜坡电压控制图2中,启动电压先以设定的速率增加,然后再转为额定电压。这种启动方式比传统的自耦变压器或Y降压启动有了较大的进步,但在某些工作状态下应用时,还会出现较大的二次冲击电流,而且容易损坏晶闸管。(2)恒流软启动目前的软启动器大都以启动电流为控制对象进行软启动的。启动时电动机的启动电流保持恒定(即限定启动电流),其电流限定值 Ism 通常在额定电流的1.54.5倍之间选择。图3显示了这种恒流软启动方式的电流特性It0Ism图2.2 恒流软启动的电流特性设定的电流限定值 Ism 大(以对电网不造成大的冲击作用为前提),启动转矩大,启动时间短;Ism小,启动转矩小,启动时间长。这种方式一般适用

9、于启动惯性大的场合。(3) 斜坡恒流软启动It0Ism若控制启动电流以一定的速率平稳地增加,当启动电流增大到所设定的电流限定值 Ism 时,就将启动电流保持恒定值直至启动结束。图4示了斜坡恒流软启动方式的电流特性。图2.3 斜坡恒流软启动从图中可以看出,电动机的启动过程分为两个阶段,先为斜坡启动阶段, 后为恒流启动阶段。当启动即将结束时启动电流会自动减下来。启动电流上升变化率和恒流值都可任意设定,恒流值 Ism 大小决定启动时间的长短。因此,启动电流上升变化率和恒流值一般应根据负载情况与生产要求来设定, 以使软启动器获得最佳的启动过程,并减小启动损耗斜坡恒流软启动方式一般适用于空载或轻载启动,

10、也适用于启动转矩随转速增加而增大的负载设备,如通风机、水泵等。(4)脉冲恒流软启动这种启动方式在启动初始阶段有一个较大的启动冲击电流,该电流值大于设定的恒流值 Ism ,从而能产生较大的启动冲击转矩去克服较大的静磨擦转矩,使设备能够迅速启动;然后进入恒流启动阶段,直至启动结束。图10示了脉冲恒流软启动方式的电流特性。It0Ism图2.4 脉冲恒流软启动图中脉冲启动阶段电流的幅值(以对电网不造成在的冲击作用为前提)和脉冲维持时间是可以设定的。显然,这种启动方式的启动转矩大,适用于重载启动,如皮带输送机、磨煤机的带载启动。除了上面介绍的软启动方式之外,还有电压与电流控制的各种组合方式,如斜坡电压与

11、电流限制下的软启动,启动脉冲、斜坡电压与电流限制下的软启动等。2.3 软启动器的运行方式(1)、在线运行软启动。软启动器产品刚上市时,主要是国外的品牌,如施奈德,西门子等,但他们都是在线运行方式。在应用过程中,人们发现在线运行有7个方面的优缺点:晶闸管长期在线运行功耗太大造成能源浪费:晶闸管的散热量太大需要机械冷风,给成套带来很大的困难:晶闸管长期在线运行给电网带来高次谐波污染:晶闸管作为开关元件长期工作其可靠性远低于机械开关:造价昂贵用户难以接受:由于晶闸管造型和考虑散热,因此体积大。软启动的优点:电动机的启动与保护及控制集于一体,强大的智能控制器全部发挥作用,由于采用机械冷风能够适用频繁启

12、动场合,电路简单便于维护和检修。(2)、旁路运行软启动器。旁路型软启动器克服了在线运行的缺点和技术难度,即电动机启动完成后旁路到接触器上运行。回避了晶闸管在线运行的缺点,尤其不需要机械风冷。但是,同时也带来四个方面的缺点:电路复杂,系统可靠性降低:强大的智能控制器不能充分利用,有的不能对电动机保护:增加成套装置的体积和成本:增加维护与检修的难度。应用中大多数采用了旁路运行方形,即便选用了在线运行方式的软起器,有许多还是加载一套旁路运行接触器,回避了晶闸管在线运行的缺点。(3)、内置晶闸管旁路型在线运行软启动器。内置晶闸管旁路型在线运行软启动器(简称内置旁路型软启动器),是在线运行软启动器内部设

13、计了一套机械触头与晶闸管并联,在电机软启动和软停车过程中由晶闸管运行,机械触头断开,当电机正常运行时晶闸管断开,机械触头闭合。这套动作过程是通过内部控制自动完成的,对外部接线来讲是一个装置,以称为在线运行。它的优点是具备上述两种类型的所有优点同时回避它们各自的缺点。优点:电路简单;自然风冷;晶闸管只管启动停车,回避晶闸管在线运行所带来的功耗和散热;体积小;强大智能控制器得以全面发挥,能对电动机起到启停与保护控制;节省成套空间;由于晶闸管和机械触头组合一体的设计,通过智能控制器实现了机械自动化。触头无电弧,使得机械触头的电寿命等于机械寿命,与旁路型相比大大提高了系统的可靠性。节能:相比较旁路型而

14、言的,由于内部旁路型的机械触头采用了无电弧控制,其银点的硬度降低,因此触点的接触电阻也降低;从而使机械触头的闭合压力大大降低,机械触头的吸合磁力减小,降低了能耗和触头的能耗降低,与旁路型相比综合起来能省50%以上。2.4 软启动的选型其中最重要的是区分频繁启动还是不频繁启动,对于软启动器来讲,一般情况下如果启动时间不超过2min,不超过30次/小时,即可定为不频繁启动,大于次数应按频繁启动考虑。频繁场合要按电动机的启动电流选取,因此软启动器一般选取管子的电流是电动机的24.5倍。不频繁下充分利用管子的短时过载能力,所以在不频繁启动的条件下,应加大软启动器的容量,根据频繁度的不同取在1.21.5

15、倍即可。软启动要有过载保护、断相保护和温度补偿功能的热过载继电器。具体选用时,要使电动机的工作电流在热元件整定电流范围以内。工作时容易过载的设备,要使电动机的额定电流值靠近热元件整定电流范围的下限。3 模糊控制部分3.1 模糊控制原理模糊控制,作为一种语言控制器,主要是模仿人的控制经验,因此模糊控制能近似地反映人的控制行为,其特性是对过程参数变化不太敏感,能克服非线性、时变和纯滞后因素的影响,不要求被控对象具有精确的数学模型,具有很强的鲁棒性。该系统针对三相异步电动机起动过程中反馈电流与晶闸管触发角之间没有精确的数学模型,采用的模糊控制方法把电动机起动电流与设定值之差E及其一个周期的变化率EC

16、作为输入量,晶闸管触发角的变化值U作为输出量。控制过程中由模糊控制器对输入量模糊化、模糊推理,决策和对输出量去模糊化,最终得到输出控制量,来控制三相异步电动机晶闸管的触发角,改变三相异步电动机的输入电压,实现软起动。本文的三相异步电动机软起动控制系统采用模糊控制的方法,其模糊控制系统原理图如图3.1所示。图3.1 模糊控制系统原理图3.2电流偏差和电流变化率以及输出控制量的模糊化 电流偏差是指电流的给定值与检测感应电动机起动电流值的偏差值,电流变化率为一个采样周期内电流偏差的变化。从理论上讲,模糊控制量划分的状态维数越高,控制越精细。但是维数越高,控制规则将变得越复杂,控制算法的实现也变的十分

17、困难。但如果将模糊控制量划分的状态维数太小,则在调节过程中容易出现振荡和调节“死区”。基于以上考虑把E的论域设为-6,+6,EC的论域设为-0.6,+0.6。取E和EC的语言集为NB,NM,NS,ZO,PS,PM,PB。为了避免电动机起动电流产生较大的波动,同时考虑到实际应用中三相异步电动机调节所能达到的灵敏度,将模糊控制的输出控制量U的论域设定为-1,1,输出控制量U论域的取值为输出触发角变化量的弧度值,取U的语言集为NB,NM,NS,ZO,PS,PM,PB。E,EC和U均采用三角形隶属度函数。电流偏差隶属函数曲线图如图2所示,电流偏差变化率和输出量的隶属函数曲线与前面所述的基本一致。图3.

18、2电流偏差隶属函数曲线图3.3模糊控制规则的确立双输入单输出型模糊控制器的控制规则为“If E is A and EC is Bthen U is C”。其中A,B,C为模糊子集;由于每个输入变量有7个模糊子集,所以共有49条模糊推理规则。模糊决策采用加权平均判决法,由如下公式计算: 4 设计方案4.1 电机软启动模型设计 图4.1为三相异步电动机软起动控制仿真原理图,由电源模块、电压测量模块、常量输入模块、6脉冲触发模块、信号分解模块、反并联晶闸管模块、触发模块、阶跃信号模块、电机模块、电动机测量单元、示波器、放大器、回馈控制部分(选路器、放大器、常量模块、可控开关模块、饱和限制模块、信号延迟模块、模糊控制模块)组成。4.2 仿真模型中各模块结构图及功能图4为三相异步电动机软启动控制中的反并联晶闸管模块,由3对反并联的晶闸管组成。图5为模糊控制模块,其输入端为三相异步电动机A相电流的有效值,其输出是用来控制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论