福清市海口镇高中数学 第二章 基本初等函数(Ⅰ)2. 指数函数教案 新人教A版必修_第1页
福清市海口镇高中数学 第二章 基本初等函数(Ⅰ)2. 指数函数教案 新人教A版必修_第2页
福清市海口镇高中数学 第二章 基本初等函数(Ⅰ)2. 指数函数教案 新人教A版必修_第3页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学必求其心得,业必贵于专精2.1 指数函数2.1.1 指数与指数幂的运算(2课时)三维目标定向知识与技能(1)了解根式的概念,方根的概念及二者的关系;(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。过程与方法通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用.情感、态度与价值观通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。教学重难点根式、分数指数幂的概念及其性质。教学过程设计一、问题情境设疑问题1、根据国务院发展研究中心2000年发表的未来20年我国发展前景分析判断,未来20年

2、,我国gdp(国内生产总值)年平均增长率可望达到7.3%,那么,在2001 2020年,各年的gdp可望为2000年的多少倍?问题2、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量p与死亡年数t之间的关系,考古学家根据这个式子可以知道,生物死亡t年后,体内碳14含量p的值。二、核心内容整合(一)根式(1)平方根:;立方根:。(2)n次方根:如果,那么x叫做a的次方根。练习1、填空:(1)25的平方根等于_; (2)27的立方根等于_;(3) 32的五次方根等于_; (4)16的四次方根

3、等于_;(5)a6的三次方根等于_; (6)0的七次方根等于_。性质:(1)当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,记为:。(2)当n为偶数时,正数的n次方根有两个,它们互为相反数,记为。(3)负数没有偶次方根,0的任何次方根都是0.(4)。练习2:求下列各式的值:(1); (2); (3); (4)。探究:一定成立吗?例1、求下列各式的值:(1); (2); (3); (4)。练习3:(1)计算;(2)若,求a的取值范围;(3)已知,则b a(填大于、小于或等于);(4)已知,求的值。(二)分数指数幂(1)整数指数幂:(简化运算,连加为乘,连乘为乘方)运算性质:(2

4、)正分数指数幂引入:,小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)思考:根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式?如:如何表示?规定:(3)负分数指数幂规定:如:规定:0的正分数指数幂等于0,0的负分数指数幂没有意义。由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1); (2); (3).例题剖析例2、求值:例3、用分数指数幂的形式表示下列各式(其中a 0)例4、计算下列各式(式中字母都是正数)(1);(2)。例5、计算下列各式:(1);(2)

5、。(三)无理指数幂问题:当指数是无理数时,如,我们又应当如何理解它呢?一般地,无理数指数幂(a 0,是无理数)是一个确定的实数。有理数指数幂的运算性质同样适用于无理数指数幂。四、知识反馈:p54,练习,1,2,3。补充练习:1、已知,求的值。2、计算下列各式:(1);(2)。3、已知,求下列各式的值:(1);(2)。4、化简的结果是( )(a) (b) (c) (d)5、等于( )(a) (b) (c) (d)26、有意义,则的取值范围是 。7、若,则 。8、,下列各式总能成立的是( )(a) (b)(c) (d)9、化简的结果是( )(a) (b) (c) (d)五、三维体系构建1、根式与分

6、数指数幂的意义2、根式与分数指数幂的相互转化3、有理指数幂的含义及其运算性质:(1); (2); (3)。六、课后作业:p59,习题2.1,a组:1,2,3,4;b组:2。教学反思:2.1。2 指数函数及其性质第一课时 指数函数的图象和性质三维目标定向知识与技能(1)掌握指数函数的概念、图象和性质;(2)能够运用指数函数的性质解决某些简单的实际问题。过程与方法通过对现实问题情境的探究,感受数学与现实生活的密切联系,理解从特殊到一般,转化与化归等数学思想方法.情感、态度与价值观在本节的学习过程中要注意列表计算中结果的分析,它是掌握指数函数的图象和性质的基础,函数图象是研究函数性质的直观工具,利用

7、图象可以帮助我们记忆函数的性质和变化规律,因此,本节的学习要注重类比分析法、发现法、转化与化归等数学思想的应用,了解事物之间的普遍联系与相互转化,体验数学知识在生产生活实际中的应用。教学重难点:掌握指数函数的图象、性质及应用。教学过程设计一、问题情境设疑材料1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x的函数关系是什么?材料2:当生物死后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。根据此规律,人们获得了生物体内碳14含量p与死亡年数t之间的关系,这个关系式应该怎样表示呢?思考1

8、:函数与函数有什么共同特征?如果用字母a来代替数和2,那么以上两个函数都可以表示为形如的函数,其中自变量x是指数,底数a是一个大于0且不等于1的变量.这就是我们要学习的指数函数:(a 0且)。思考2:(a 0且),当x取全体实数对中的底数为什么要求a 0且?方法:可举几个“特例”,看一看a为何值时,x不能取全体实数;a为何值时,x可取全体实数;不能取全体实数的将不研究。结论:当a 0且时,有意义;当a = 1时,是常量,无研究价值;当a = 0时,若x 0,无研究价值;若,无意义;当a 0且.提问:那么什么是指数函数呢?思考后回答。二、核心内容整合1、指数函数的定义:函数叫做指数函数,其中x是

9、自变量,函数的定义域是r。练习1:下列函数中,那些是指数函数? 。(1)(2)(3)(4)(5)(6)(7)(8)(且)2、指数函数的图象和性质:思考3:我们研究函数的性质,通常通过函数图象来研究函数的哪几个性质?答:1、定义域;2、值域;3、单调性;4、对称性等。思考4:得到函数的图象一般用什么方法?列表、求对应的x和y的值、描点、作图。用描点法画出指数函数的图象。思考:函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?(两个函数的图象关于轴对称)(3)相关结论0 1图象性质定义域r值域(0 , +)定点过定点(0,1),即x = 0时,y = 1(1)a 1,当x 0时,y 1;

10、当x 0时,0 y 1。(2)0 a 1,当x 0时,0 y 1;当x 0时,y 1。单调性在r上是减函数在r上是增函数对称性和关于y轴对称三、例题分析示例例1、已知指数函数的图象经过点(3,),求,的值。例2、比较下列各题中两个值的大小:(1)1.7 2.5,1.7 3; (2)0.8 0。1,0.8 0.2; (3)1.7 0.3,0.9 3。1.四、学习水平反馈:课本p58,练习1、2、3。五、三维体系构建1、指数函数的定义;2、指数函数简图的作法以及应注意的地方;3、指数函数的图象和性质(见上表)六、课后作业:p59,习题2。1,a组:5、6、7、8。教学反思:第二课时 指数函数性质的

11、应用三维目标定向知识与技能在掌握指数函数性质的基础上利用指数函数的性质解决求函数的单调区间、比较大小、求字母的取值范围、求一类函数的值域等问题,充分体现指数函数的性质应用,并且会借助指数函数模型求解实际问题。过程与方法通过应用指数函数的性质解决实际问题的过程,体会应用知识分析问题、解决问题的思维方法,学会转化和化归的数学思想。情感、态度与价值观增强学生的应用意识,树立学好数学的信心,最终形成锲而不舍的钻研精神和科学态度。教学重难点:指数函数性质的应用。教学过程设计一、温故而知新指数函数的概念、图象与性质(强调单调性)二、核心内容整合1、图象的平移与对称变换一般地,对形如形式的函数,其图象可由的

12、图象经过左右上下平移得到。将指数函数的图象通过翻折、对称,再辅助平移变换可得到较为复杂的函数图象.例1、若函数恒过定点p,试求点p的坐标。解:将指数函数的图象沿x轴右移一个单位,再沿y轴上移3个单位即可得到的图象,因为的图象恒过(0,1),故相应的恒过定点(1,4)。练习1、说明下列函数的图象与指数函数的图象的关系,并画出他们的图象:(1); (2)。练习2:画出函数的图象。2、复合函数单调性的应用指数函数的单调性应用十分广泛,可以用来比较数或式的大小,求函数的定义域、值域、最大值、最小值、求字母参数的取值范围等。对复合函数,若在区间(a,b)上是增函数,其值域为(c,d),又函数在(c,d)

13、上是增函数,那么复合函数在(a,b)上为增函数.可推广为下表(简记为同增异减):增增减减增减增减增减减增例2、求不等式中x的取值范围。解:当a 1时,函数在r上是增函数,所以;当0 a 1,均不为奇函数或偶函数,但由其参与而构成的较为复杂的函数式的奇偶性,是经常出现的题型之一,其判断方法仍是判断与之间的关系。例4、已知,(1)求函数的定义域;(2)判断的奇偶性。(3)求证:.解:(1)由,得,所以函数的定义域为;(2),则,所以为偶函数。(3)当x 0时,由指数函数的性质知,所以,所以当x 0时,。由于为偶函数,所以当x 0时, 0.总之,且时,函数。练习:已知为奇函数,则k = 。4、实际应

14、用指数函数应用广泛,如银行复利、人口增长、细菌繁衍、分期付款、土地流失等,这些问题有些模型是指数函数,有些则是指数型函数或,要具体问题具体分析。例5、截止1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1,那么经过20年后,我国人口数最多为多少(精确到亿)?解:设今后人口年平均增长率为1%,经过x年后,我国人口数为y亿,则有(亿),当x = 20时,(亿)。所以,经过20年后,我国人口数最多为16亿。小结:在实际问题中,经常会遇到类似的指数增长模型:设原有量为n,每次的增长率为p,经过x次增长,该量增长到y,则.我们把形如(且)的函数称为指数型函数,这是非常有用的函数模型。练

15、习(1)如果人口年平均增长率提高1个百分点,那么20年,33年后我国的人口数是多少?(2)如果年均增长率保持在2%,试计算2020 2100年,每隔5年相应的人口数。(3)我国人口数的增长呈现什么趋势?(4)如何看待我国的计划生育政策?三、课后作业:p65,习题2.1,a组9,b组3,4.教学反思:指数函数小结学情分析:本节要解决的问题是:运用幂的运算性质进行化简、求值,利用指数函数的定义、图象和性质解决有关问题。解决上述问题的关键是:类比整数指数幂的运算性质记忆分数指数幂的运算公式,能实现根式和分数指数幂的转化,通过指数函数的图象牢记指数函数的定义域、值域、单调性等性质,注意底数对指数函数性质的影响.一、利用幂的运算性质进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论