流量 的误差理论及测量不确定度_第1页
流量 的误差理论及测量不确定度_第2页
流量 的误差理论及测量不确定度_第3页
流量 的误差理论及测量不确定度_第4页
流量 的误差理论及测量不确定度_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三节误差理论及测量不确定度一、误差理论(一)测量误差1、测量的概念测量是指以确定量值为目的的一组操作。任何测量结果都含有误差,误差自始至终存在于一切科学实验和测量过程之中。测量按获得测量值的方法可分为直接测量、间接测量和组合测量;按测量条件的异同,测量可分为等精度测量和不等精度测量。2、测量误差的概念测量误差是指测量结果减去被测量的真值。常用的误差表示方法有:绝对误差、相对误差和引用误差。(1)绝对误差绝对误差,即测量误差的定义=xix0 (2-3-1)式中:绝对误差;xi测量结果或测得值;x0被测量的真值。(2)相对误差相对误差,即测量误差(绝对误差)除以被测量的真值。由于真值通常是未知的

2、,所以实际上用的是约定真值,当误差较小时,约定真值可用测得值代替,并用百分数表示(100%) (2-3-2)式中:r相对误差;x0约定真值;、xi、x0同式(2-3-1)(3)引用误差引用误差即测量仪器的误差除以仪器的特定值,该特定值一般称为引用值,可以是测量仪器的量程或标称范围的上限。引用误差可用百分数表示为 (2-3-3)式中:rn测量仪器的引用误差;x测量仪器的绝对误差,常用示值误差表示;xm测量仪器的量程或标称范围的上限。仪器的准确度等级,就是根据它允许的最大引用误差来划分的。0.1级表,表示该仪器允许的最大引用误差限为0.1%。以rnm表示之 (2-3-4)式中:rnm最大引用误差;

3、xm仪器标称范围内出现的最大示值误差;xm同式(2-3-3)。3、测量误差的来源测量误差的来源主要是“人、机、料、法、环”五个方面的误差。(1)测量设备误差测量设备本身的结构、工艺、调整以及磨损、老化等所引起的误差。(2)方法误差测量方法不完善,主要为测量技术及操作和数据处理所引起的误差。(3)环境误差测量环境的各种因素,如温度、湿度、气压、含尘量、电场、磁场与振动等所引起的误差。(4)人员误差由测量人员的生理机能和实际操作,如视觉、听觉的的限制或固有习惯、技术水平以及操作失误等所引起的误差。(5)被测对象变化误差被测对象自身在整个测量过程中处在不断变化着,如被测光度灯的光度、被测量块的尺寸等

4、所引起的误差。4、测量误差的分类按误差的性质或出现的规律来分,测量误差可分为二类:系统误差和随机误差。(1)系统误差和随机误差的概念系统误差在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。即 (2-3-5)式中:系统误差;xi对同一被测量进行无限多次测量所得结果的平均值;x0被测量的真值。系统误差按其呈现特征可分为定值系统误差和变值系统误差。定值系统误差可分为恒正定值和恒负定值系统误差;而变值系统误差又可分为线性、周期性和复杂规律系统误差。随机误差测量结果与在重复性条件下,对同一被测量进行无限多次测量测得结果的平均值之差。即 (2-3-6)式中:随机误差;xi测

5、量结果;同式(2-3-5)。测量误差和系统误差、随机误差关系由(2-3-5)式可知:(2-3-6)式可知:根据(2-3-1)式: (2-3-7)由此可知:测量误差等于系统误差和随机误差的代数和。这是VIM“国际通用计量学基本术语”1993年第二版所给出的新定义后而成立的。(二)随机误差和系统误差1、 随机误差(1)正态分布1)、正态分布的特性经统计分析,许多随机误差服从正态分布,它有三种特性:a、对称性:绝对值相等的正负误差出现的可能性相等;b、单峰性:绝对值小的误差出现的可能性大,绝对值大的误差出现的可能性小;c、有界性:随机误差的绝对值不会超过某一界限。2)、以正态分布为例,统计中常见术语

6、说明(见图2-3-1)a、置信水准(置信概率、置信水平)以p表示;b、显著性水平(置信度)以表示,=1p;c、置信区间以k,k表示;d、置信因子以k表示,当分布不同时,k值也不同。3)、正态分布的随机误差表示法实验标准差(见图2-3-1)密度函数:式中:e自然对数的底(e=2.71828);随机误差;标准偏差;2方差。上述正态分布密度函数,又称高斯曲线。数学期望:方差:标准偏差: (2-3-8)式中:n测量次数;xi第i次测得值;n次测得值的算术平均值;第i次测得值与平均值之差,称为残余误差或残差。式(2-3-8)即贝塞尔(Bessel)公式。由于n为有限次,所以以上标准偏差,称为实验标准偏差

7、,亦称标准差或均方根差,对同一量(x)进行有限(n)次测量,其测得值(xi)间的分散性可用标准差s(xi)来表述。可以导出,测量列平均值的标准差比标准差小倍,即 (2-3-9)值得指出的是,是n次中单次测量的实验标准差,而是测量列算术平均值的实验标准差。由于随机误差具有抵偿性,故平均值的实验标准差比单次测量值的实验标准差小,且按速度进行。分布例子:a、重复条件或复现条件下多次测量的算术平均值分布;b、用扩展不确定度Up给出、而对其分布又无特殊指明;c、合成不确定度uc(y)中,相互独立分量ui(y)较多,大小接近;d、合成不确定度uc(y)中,相互独立分量ui(y)中,存在2个界限值接近的三角

8、分布,或4个界限值接近的均匀分布;e、合成不确定度uc(y)中,相互独立分量ui(y)中,量值较大的分量接近正态分布。(2)非正态分布的随机误差表示方法1)、均匀分布(矩形分布(见图2-3-2)密度函数:数学期望:方差:标准偏差:(a为置信水准区间的半宽度)(2-3-10)分布例子a、按级使用的仪器仪表最大允许误差导致的不确定度;b、数据修约导致的不确定度;c、数字式测量仪器对示值量化(分辨力)导致的不确定度;d、模拟式仪表读数误差引起的不确定度;e、用上、下界给出的线膨胀系数;f、缺乏任何其它信息时,一般假设为均匀分布。2)、三角分布(见图2-3-3)密度函数: (-a0) (0a) 数学期

9、望:方差:标准偏差: (2-3-11)分布例子:a、相同修约间隔给出的两独立量之和或之差,由修约导致的不确定度;b、因分辨力引起的两次测量结果之和或差的不确定度;c、用替代法检定标准砝码、电阻时,两次调零不准导致的不确定度;d、两相同均匀分布的合成。3)、梯形分布(见图2-3-4)密度函数: (-a-b) = (-bb) (ba)数学期望:标准偏差: (2-3-12)式(2-3-12)中:当b=0即=0,则当a=b即=1,则分布例子两独立均匀分布(a2a1)之和所导致的不确定度;4)、反正弦分布(见图2-3-5)密度函数: (-aa)数学期望:标准差: (2-3-13)分布例子:服从均匀分布变

10、量的正弦或余弦函数,则服从反正弦分布。a、度量偏心引起的测角不确定度;b、正弦振弦引起的位移不确定度;c、无线电中失配引起的不确定度;d、随时间正余弦变化的温度不确定度。5)、t分布学生分布(见图2-3-6)标准偏差 (2-3-24)式中:tp置信概率自由度t分布是一般形式,而标准正态分布N(0,1)是其特殊形式,t()成为标准分布的条件是当自由度趋于。tp()为临界值,它用于扩展不确定度评定中作为包含因子,即k=tp()之用。分布例子:在不确定度评定中,既有正态分布,又有较多的均匀分布或其他分布时,其包含因子用tp()处理。6)、不同分布与p、k、的关系(见表2-3-1)表2-3-1 不同分

11、布与p、k、的关系分布类型p (%)k备注正态99.7330.3a三角1000.4a梯形(=0.71)1002 0.5a=均匀(矩形)1000.6a反正弦1000.7a两点10011at分布99.733.96( =10)0.25a2、系统误差(1)主要特征由系统误差定义和系统误差产生原因的分析可以得出其特征为:系统误差产生在测量之前,具有确定性;多次测量不能减弱和消除它,不具有抵偿性。(2)系统误差的减弱和消除要减弱或消除系统误差,首先应是如何发现系统误差。常用的方法有:实验对比法、残余误差观察法、残余误差校检法、计算数据比较法、秩和检验法、t检验法等。1)采用加修正值的方法消除系统误差=xi

12、x0x0=xi+()所谓修正值就是负的绝对误差,它是用代数法与未修正测量结果相加,以补偿系统误差的值。2)恒定系统误差的减弱和消除方法交换消除法;替代消除法;异号抵消法。3)变值系统误差的减弱和消除方法线性系统误差消除法对称测量法;周期性系统误差消除法半周期偶数测量法。(三)、测量误差小结图(2-3-7)给出了有关测量误差的示意图。由图(2-3-7)可知,任意一个误差均可分解为系统误差和随机误差的代数和。图中横坐标表示被测量,x0为被测量的真值,xi为第i次测得值,样本均值就是n个测量值的算术平均值:,而总体均值就是当测量次数n时统计平均值,或叫数学期望,即:。设测得值是正态分布N(,),则曲

13、线的形状(按值)决定了随机误差的分布范围,及其在范围内取值概率,由图可见,误差和它的概率分布密度相关,可以用概率论和数理统计的方法来恰当处理。图(2-3-7)清楚地表示了,各量之间的相互关系。(四)异常值的判断和剔除在重复性条件或复现性条件下,对同一量进行的多次测量中,有时可以发现个别值,其数值明显偏离它所属样本的其它值,我们称之为异常值。1、常用的判断异常值准则(1)莱茵达()准则(3准则)若某测得值得残余误差的绝对值大于三倍的标准偏差时,则认为该次测得值为异常值,应予以剔除。即3=3 (2-3-25)当异常值剔除后,对剩下的测量值要重新计算值,并重新判断余下的各个数据,如还有再剔除,直至所

14、有剩余残差的绝对值3为止。莱茵达准则对测量次数要求:n10次无法判断,不适用;n30近似适用。(2)格拉布斯(Grubbs)准则若测得值xi的最大残余误差的绝对值满足 (2-3-26)则认为该为异常值,应于剔除式中:g0(n,)Grubbs准则的临界值,见表2-3-2;n测量次数;显著度(一般为0.05或0.01)。格拉布斯准则对测量次数的要求:n30可以适用表2-3-2格拉布斯准则的临界值g0(n,)n显著度n显著度0.050.010.050.0131.151.16172.482.7841.461.49182.502.8251.671.75192.538.8561.821.94202.562

15、.8871.942.10212.582.9182.032.22222.602.9492.112.32232.622.96102.182.41242.642.99112.232.48252.663.01122.282.55302.743.10132.332.61352.813.18142.372.66402.873.24152.412.70502.963.34162.442.751003.213.60(五)近似数的运算与测量数据处理1、概念(1)近似数:对于任何数,包括无限不循环小数和循环小数,截取一定位数后所得的数即为该数的近似数。(2)有效数字:若一近似数,其修约误差的绝对值不大于该近似数末

16、位半个单位,则从此近似数左起第一个非零数字起到最末一位数字止的所有数字都是有效数字。一个近似数有n个有效数字,也称这个近似数为n位有效数字。(3)修约间隔:系确定修约保留位数的一种方式。修约间隔一经确定,修约值只能是修约间隔的整数倍。2、有效数字位数的判断(1)判断时,对“0”应特别注意,它是否为有效数字,则取决于它在近似数中的位置;(2)有效数字的位数与单位的换算无关,如遇使有效数字位数增加,宜采用科学计数法,写成a10n形式。在此形式中,有效数字只体现在a中,而与10n无关;(3)小数点后面的“0”不可随意取舍,否则会改变有效数字的位数,从而影响数据的准确度;(4)常数是没有误差的正确数,

17、它可被看成有无限多位有效数字;(5)测量中,测量结果有效数字的最末位应与误差所在位对齐;(6)有效数字位数,取决于被测量大小、测量仪器及测量方法,不因其他原因而改变。3、数值修约规则国家标准GB/T8170-1987数值修约规则,对“1”、“2”、“5”间隔的修约方法分别作了规定,但较为烦琐,现将简单方法介绍如下:(1)“1”间隔修约规则(0.5舍去,0.5进入,0.5偶数法则)1)若舍去部分数值大于保留的末位数的0.5单位,则末位数值加1;2)若舍去部分数值小于保留的末位数的0.5单位,则末位数值不变;3)若舍去部分数值等于保留的末位数的0.5单位,则末位数值凑成偶数。a、当末位数为偶数(0

18、、2、4、6、8)时,则末位数值不变;b、当末位数为奇数(1、3、5、7、9)时,则末位数值加1。注:1)负数修约时,先按正值进行修约,最后加负号。2)不许连续修约如:将15.4546修约至个位,即修约间隔为1正确:15.454615不正确:15.454615.45515.4615.516(2)“2”、“5”间隔修约规则1)如果在为修约间隔整数倍的一系列数中,只有一个数最接近拟修约数,则该数就是修约数。如将1.15001按0.1修约间隔进行修约应是1.2。2)如果在为修约间隔整数倍的一系列数中,有连续的两个数同等地接近拟修约数,则这两个数中,只有为修约间隔偶数倍的那个数才是修约数。a、如将60

19、.30按0.2间隔进行修约:60.30 或者:选两个数中末两位数被4整除的数,即60.4。b、如将18.075按0.05修约间隔进行修约:18.075 或者:选取以“0”结尾的数,即18.10注:按“1”、“2”、“5”间隔修约后,其数应是各间隔的整数倍,因此,其修约数结尾:“2”间隔应为2、4、6、8、0;“5”间隔应为5或0。4、近似数的运算(1)单步运算1)加、减运算a、以参与运算的小数位数最少者为准;b、其余各数均修约到比该数小数多一位;c、按普通方法相加减;d、运算结果的小数位数应修约至与小数位数最少者相同。如:1849.0+14.75-0.0093+1.6311849.0+14.7

20、5-0.01+1.631865.381865.42)乘、除(或开方、乘方)运算当两个或多个近似数相乘、除时,以有效数字位数最少者为准,其余的数的有效数字位数均比它多保留一位,运算结果的有效数字位数应与最少者相同。如:420010.0054.310551032.151032103(2)多步运算(混合运算)1)先乘除后加减;2)中间计算步骤的运算结果比上述原则多保留一位;3)运算结果的小数位数应与最后参与加、减运算中小数位数最少者相同。如:3.160.0421.732+6.370.0471.9650.10510.0473.160.0421.73+6.370.0471.960.1050.0470.2

21、30+26.60.004940.23+26.6-0.0026.8326.85、等精度直接测量的数据处理对某量进行n次等精度直接测量,得测量列其处理步骤归纳如下:(1)判断系统误差,并消除或减弱其影响,若已知,可用加修正值方法消除之。(2)计算测量列的平均值(3)计算各测得值的残余误差(4)检查和的计算是否正确1)当无舍入误差时(刚好除尽),应满足:2)当有舍入误差时,应满足:式中:n测量次数;m中最末位的小数位数。(5)用Bessl公式计算单次测量的实验标准差s(xi)(6)判断并剔除异常值根据Grubbs准则,若有,则对应的应剔除,然后再按(2)(6)步骤重新计算判断,直至不含异常值为止。(

22、7)计算平均值的实验标准差(8)计算平均值的扩展不确定度U可由附录t分布表中根据置信概率p和自由度=n1查得。(9)测量结果报告给出被测量最佳估计值和测量不确定度。二、测量不确定度测量不确定度一般均简称为不确定度,它是各种不确定度,如:标准不确定度、合成不确定度、扩展不确定度、相对不确定度、A类不确定度、B类不确定度等的一个总体或通称。不确定度一词指可疑程度或习惯地俗称为“不可靠程度”。它是测量结果可疑程度的一种定量表述,定量地说明了实验室(包括人员、设备和条件)测量能力水平。(一)、测量不确定度的定义和解释1、定义:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。2、说明:(1)、

23、测量不确定度是表明被测量之值的分散性的,它用与测量结果相联系的参数来表示;(2)、此参数可以是诸如标准差或其倍数,或说明了置信水准的区间的半宽度。(3)、测量不确定度由多个分量组成。其中一些分量可用测量列结果的统计分布估计,并用实验标准差表征。另一些分量则可用基于经验或其它信息的假定分布估算,并用标准表征。(4)、合理:是指应考虑到各种因素对测量的影响,在评定中,既不能重复,也不能遗漏。(5)、被测量之值:一般可理解为被测量的真值,但这里应理解为许多个测量结果,其中不仅包括通过测量得到的测量结果,还包括测量中没有得到但又是可能出现的测量结果,如n次测量结果的算术平均值。(6)、分散性:是指给定

24、条件下若干测量结果之间一种分散区间。在重复和复现性条件下多次观测结果均有其分散性,全部不确定度分量均贡献给了分散性,包括那些由系统效应引起的分量。(7)、测量结果:被测量之值的最佳估计值,如观测结果的平均值或加修正值。(8)、相联系:是指测量不确定度应和测量结果一起,即一个测量结果应有一个相对应的测量不确定度。应注意是和测量结果一起而非和测量仪器一起。(9)、不确定度恒为正值。当由方差得出时,取其正平方根。(10)、不确定度表示形式1)绝对不确定度,与被测量量纲相同;2)相对不确定度,无量纲。(二)测量误差与测量不确定度的主要区别(见表2-3-3)表2-3-3 测量误差与测量不确定度的主要区别

25、序号内容测量误差测量不确定度1定义表明测量结果偏离真值,是一个确定的值。在数轴上表示为一个点。表明被测量之值的分散性,是一个区间。用标准偏差,标准偏差的倍数,或说明了置信水准区间的半宽度来表示。在数轴上表示为一个区间。2分类按出现于测量结果中的规律,分为随机误差和系统误差,它们都是无限多次测量的理想概念。按是否用统计方法求得,分为A类评定和B类评定,它们都以标准不确定度表示。在评定测量不确定度时,一般不必区分其性质。若需要区分时,应表述为“由随机效应引入的测量不确定度分量”和“由系统效应引入的测量不确定度分量”。3可操作性由于真值未知,往往无法得到测量误差的值。当用约定真值代替真值时,可以得到

26、测量误差的估计值。测量不确定度可以由人们根据实验、资料、经验等信息进行评定,从而可以定量确定测量不确定度的值。4数值符号非正即负(或零),不能用正负()号表示。是一个无符号的参数,恒取正值。当由方差求得时,取其正平方根。5合成方法各误差分量的代数和。当各分量彼此不相关时用方和根法合成,否则应考虑加入相关项。6结果修正已知系统误差的估计值时,可以对测量结果进行修正,得到已修正的测量结果。修正值等于负的系统误差。由于测量不确定度表示一个区间,因此无法用测量不确定度对测量结果进行修正。对已修正测量结果进行不确定度评定时,应考虑修正不完善引入的不确定度分量。7结果说明误差是客观存在的,不以人的认识程度

27、而转移。误差属于给定的测量结果,相同的测量结果具有相同的误差,而与得到该测量结果的测量仪器和测量方法无关。测量不确定度与人们对被测量、影响量、以及测量过程的认识有关。在相同条件下进行测量时,合理赋予被测量的任何值,均具有相同的测量不确定度。即测量不确定度仅与测量方法有关。8实验标准差来源于给定的测量结果,它不表示被测量估计值的随机误差。来源于合理赋予的被测量之值,表示同一观测列中,任一个估计值的标准不确定度。9自由度不存在。可作为不确定度评定可靠程度的指标。它是与评定得到的不确定度的相对标准不确定度有关的参数。10置信概率不存在。当了解分布时,可按其置信概率给出置信区间。(三)测量结果和测量仪

28、器的误差、准确度、不确定度之比较(见表2-3-4)表2-3-4 测量结果和测量仪器的误差、准确度、不确定度之比较测量结果误差定义:测量结果减去被测量的真值。测量结果的误差与真值或约定真值有关,也与测量结果有关。是一个有确定符号的量,不能用“”号表示。测量结果的误差等于系统误差和随机误差的代数和。准确度定义:测量结果与被测量的真值之间的一致程度。测量结果的准确度是一个定性的概念,不要和具体数字连用而将其定量化。不确定度定义:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。表示一个区间,恒为正值。用标准不确定度或扩展不确定度表示。测量仪器误差定义:测量仪器的示值与对应输入量真值之差,也称

29、为示值误差。示值误差与真值有关,实际上常用约定真值而得到示值误差的近似值。示值误差是对于某一特定仪器和某一特定的示值而言的,同型号不同仪器的示值误差一般是不同的,同一台仪器对应于不同测量点的示值误差也可能不同。最大允许误差是对某型号仪器人为规定的误差限,即表示一个区间。它不是测量仪器实际存在的误差,是所规定的示值误差的最大允许值。当用仪器进行测量,并直接将仪器示值作为测量结果时,由仪器所引入的不确定度分量可由它导出。准确度定义:测量仪器给出接近于真值的响应能力。是一定性的概念,但可以用准确度等级或测量仪器的示值误差来定量表述。目前不少仪器说明书上给出的准确度,实际上是指最大允许误差。不确定度没

30、有对测量仪器的不确定度下过定义,因此尽量不要用“测量仪器不确定度”这种说法。可将“测量仪器的不确定度“理解为在测量结果中,由测量仪器所引起的不确定度分量,或理解为测量仪器所提供的标准量值的不确定度。如果仪器经过校准,有时也将仪器示值误差的不确定度称为仪器的不确定度。(四)测量误差和测量不确定度小结1、误差和不确定度是两个完全不同而相互有联系的概念,它们相互之间并不排斥。不确定度不是对误差的否定,相反,它是误差理论的进一步发展。2、用测量不确定度评定代替过去的误差评定,决不是简单地将“误差”改成“不确定度”就可以了。也不表示“误差”一词不能再使用。误差和不确定度的定义和概念是不同的,因此不能混淆

31、和误用。应该根据误差和不确定度的定义和它们之间的区别来加以判断。应该用误差的地方就用误差,应该用不确定度的地方就用不确定度。3、误差仅与测量结果及被测量的真值或约定真值有关。对于同一个被测量,不管测量仪器、测量方法、测量条件如何,相同测量结果的误差总是相同的。而在重复性条件下进行多次重复测量,得到的测量结果一般是不同的,因此它们的测量误差也不同。4、测量不确定度和测量仪器、测量方法、测量条件、测量程序以及数据处理方法有关,而与在重复性条件下得到的具体测量结果数值大小无关。在重复性条件下进行测量时,不同测量结果的不确定度是相同的,但它们的误差则肯定不同。5、若已知测量误差,就可以对测量结果进行修

32、正,得到已修正的测量结果。而不确定度是不能用来对测量结果进行修正的。在评定已修正测量结果的不确定度时,必要考虑修正值的不确定度。6、误差是一个确定的数值,因此误差合成时应采用代数相加的方法。不确定度表示被测量之值的分布区间,当各不确定度分量不相关或相互独立时,各不确定度分量的合成采用几何相加的方法,即常用的方和根法。7、测量仪器没有不确定度,因为没有对仪器的不确定度下过定义。因此一般不要采用“测量仪器的不确定度”这种说法,但可将测量仪器的不确定度理解为仪器所提供的标准量值的不确定度,或在测量结果中由测量仪器引入的不确定度分量,因此实际上应该说“测量仪器引入的不确定度”。不确定度这一参数不是测量

33、仪器的固有特性。表征测量仪器性能的术语时示值误差或最大允许误差,它们与用测量引起得到的测量结果的不确定度有关。8、计量标准装置的情况与测量仪器相类似,但更复杂一些,一般也不要采用“计量标准装置的不确定度”这种说法。可以将“计量标准装置的不确定度”理解为计量标准装置所提供的标准量值的不确定度,或理解为在测量结果的不确定度中,由计量标准装置(包括装置中的所有测量仪器、配套设备以及测量方法)所引入的不确定度分量。因此实际上也应该是“计量标准装置引入的不确定度”。9、测量仪器有两种使用方式:加修正值使用和不加修正值使用。若测量仪器经过校准而已知其示值误差,则有可能加修正值使用。在这种情况下,有时将示值

34、误差的不确定度(即修正值的不确定度)称为该测量仪器的不确定度。若测量仪器未经过校准,则通常不加修正值使用。此时其最大允许误差就可作为评定该仪器在测量结果种所引入的不确定度分量的依据。在已知分布的情况下,通过B类评定,可以由最大允许误差得到该分量的标准不确定度。10、过去人们经常会误用“误差”一词,即通过误差分析得到的往往是被测量值不能确定的范围,它表示一个区间,而不是真正的误差值。真正的误差值应该与测量结果有关。(五)测量不确定度来源1、被测量的定义不完整;2、复现被测量的测量方法不理想;3、取样的代表性不够,即被测样本不能完全代表所定义的被测量;4、对测量过程受环境影响的认识不恰如其分或对环

35、境参数的测量与控制不完善;5、对模拟式仪表的读书存在人为的偏移;6、测量仪器的计量性能(如灵敏度、鉴别力、死区及稳定性等)的局限性;7、测量标准或标准物质的不确定度;8、引用的数据或其他参数的不确定度;9、测量方法和测量程序的近似和假设;10、在相同条件下被测量在重复观测中的变化。(六)不确定度评定中有关名词及相关术语1、标准不确定度(u):以标准偏差表示的测量不确定度2、合成标准不确定度(uc):当测量结果是由若干个其他量的值求得时,按方差或(和)协方差算得的标准不确定度。注:尽量回避相关或半死半活相关。3、扩展不确定度U:确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间,

36、它可用合成不确定度乘以包含因子U=kuc。4、A类不确定度ucA:用对观测列进行统计分析方法所得,最常用Beseel公式,还有别提尔斯法、极差法和最大残差法。5、B类不确定度(ucB)用不同于对观测列进行统计的方法所得,常用基于经验,其它信息假定的概率等。6、包含因子(k、kp):为获得扩展不确定度所乘的数字因子。说明:a、一般以k表示 k=b、置信概率为p时的包含因子 kp=c、其值在23范围内7、自由度:反映了相应标准不确定度的可靠程度,它用来评定不确定度质量说明:a、在方差计算中,自由度为和的项数减去限制数,记为A类Beseel公式中,=n-1。用极差法 和n关系可查表。b、B类不确定度

37、分量自由度估计法c、合成不确定度uc的自由度称有效自由度:以表示。8、相关系数:是两个变量之间相互依赖性度量,它等于两个变量间的协方差除之各自方差之积的正平方根:p(y.z)= 说明:a、求相关系数P(y.z)很复杂,为此用简化处理。b、相关系数p只取-1,0,+1三个值,负相关取-1;正相关取+1,不相关取0,一般采用不相关。c、强相关各分量,合成时采用线性相加减;不相关分量合成时采用方差相加。9、灵敏系数 中的即为灵敏系数说明:a、由数学模型的函数求得,若y=f(x1xn),则;b、由实验求得。(七)、测量不确定度评定步骤1、概述(包括测量依据、测量环境、测量标准、测量对象、测量过程);2

38、、数学模型;3、方差和灵敏系数;4、计算标准不确定度分量(包括A类、B类);5、标准不确定度一览表(包括不确定度来源);6、合成标准不确定度和有效自由度(适用时);7、扩展不确定度;8、报告与表示。(八)测量不确定度评定方法1、概述分五点说明,即测量依据、测量环境、测量标准、测量对象和测量过程。这五点是以下评定过程中要用到的内容。(1)测量依据:属于检定或校准的,其依据是检定规程或校准规范;属于检测的,可以是标准或检验方法;(2)测量环境:是规程、规范或标准、检验方法要求的温度、湿度等环境条件,并可写上本次测量的环境条件,以便考虑是否由环境条件引起的不确定度分量。(3)测量标准:检定、校准时,

39、应写明所用的计量标准的名称、测量范围、准确度或测量不确定度;检测时,应写明所用检测设备的名称、测量范围和准确度或测量不确定度。(4)测量对象:写检定、校准的计量器具或检测的物理量。如长度、电压、电流等。同时要写明计量器具的名称、测量范围、准确度或检测物理量的基本误差要求。(5)测量过程:要写明测量的过程和方法,这样就把下一步数学模型也交代清楚了。最后还应说明本次测量是以某测量点为例,这样既体现了测量不确定度是与测量结果相联系的参数,又为计算相对测量不确定度提供了数据。2、建立数学模型式中:y为被测量的估计值,输出量;x1xn对测量不确定度做出贡献的输入量。说明:a、数学模型不是唯一的;b、数学

40、模型是测量不确定度评定的依据,特别应包括对不确定度有不可忽视影响的输入量;c、数学模型可以是复杂的,也可以非常简单,特别是检测时的数学模型y=x;d、数学模型可从测量原理导出,也可由实验方法确定;e、建立数学模型时,要尽量找到所有影响不确定度的来源,做到不遗漏,不重复。3、方差和灵敏系数(1)方差:说明:a、为输出估计值y的合成方差; b、为输出估计值y的合成标准不确定度,是的正平方根;它表征合理赋予y值的分散性; c、上式只是全部输入量为彼此不相关时方差式子;并称为不确定度传播律; d、式中u(xi)可以按A类,也可按B类方法求得;(2)灵敏系数:是在Xi = i时导出的,它描述y如何随变化

41、而变化(3)求灵敏系数的方法: a、对数学模型求偏导数 例:P=f(V、R0、a、t)= b、用实验方法:即通过xi的一个微小的变化,其余不变,求得相应y变化,则灵敏系数4、计算标准不确定度分量 (1)A类评定 1)用被测仪器的重复性来表示 Beseel公式说明:a、当测量结果取其中任一次,则u()=s;b、当测量结果取算术平均值,则;c、当测量结果取n次中的m次平均值,则;d、自由度:。e、n选定:一般 5n10 2)极差法:一般测量次数较少时采用此法。式中, R重复测量中最大值与最小值之差; 极差系数c及自由度可查表2-3-5表2-3-5极差系数c及自由度n23456789c1.131.6

42、42.062.332.532.702.852.970.91.82.73.64.55.36.06.8(2)B类评定1)B类标准不确定度信息来源a、以前观测数据;b、对有关技术资料和测量仪器特性的了解和经验;c、生产部门提供的技术说明文件,如说明书等;d、校准证书、检定证书或其它文件提供的数据、准确度的等级,包括暂用的极限误差等;e、手册或某资料给出的参数数据及其不确定度;f、规定实验方法的国家标准或类似技术文件中给出的重复性限r或复现性限R。用这类方法得到的估计方差,可称为B类方差。即为B类标准差。2)不同信息的B类标准差a、已知扩展不确定度U和包含因子k,则 ;b、已知扩展不确定度Up,如U9

43、5,U99,若为正态分布,正态分布中的p%和kp关系见表2-3-6。表2-3-6正态分布中的p%与kp关系p%5068.27909595.459999.73kp0.671 *1.6451.9602 *2.5763 *c、已知扩展不确定度Up和置信概率及有效自由度的t分布,则需查t分布表得,再据上式求。见附录以上三种情况中的U和Up可以从校准证书中得到。d、已知置信区间半宽度a和对应于置信概率的包含因子k,则e、其它几种分布,除t分布外,还有均匀,三角,反正弦,梯形,两点等分布,已知半宽度为a,且a区间内概率p=100%,则常用分布与k、u()关系见表2-3-1f、界限不对称,求=g、由重复性限

44、r或复现性限R求 r/2.83 R/2.83 (r、R置信水平95% ,正态) 证:yx1x2r u2(y)u2(x1)u2(2)2u2(x) u (yu (xi) 当p = 95%,则k=2 扩展不确定度 = 2 =r/2.83 同理=R/2.83h、以“等”使用仪器的当证书上给出准确度等别时,可按检定系统表或检定规程所规定的扩展不确定度或Up和k或kp值,则 = 或 =可找出Up、p与时,按t分布处理=i、以“级”使用仪器的当证书上给出准确度级别时,可按检定系统或检定规程所规定的最大允许误差A则=j、数字式仪表分辨力引起示值的,见图8。若分辨力为(步进量)作均匀分布处理, 则 a = 0.

45、5 3)B类评定中的自由度a、关系式:式中:标准不确定度的相对不确定度,即不确定度的不确定度,是一种二次或二阶不确定度。按上式可计算,见表2-3-7。表2-3-7 与关系010%5020%1225%830%640%350%2 b、为的估计估计法 校准证书上给出U或Up,若稳定性好,校准时间不长,保存好; 按最大允差或级别所评出的; 按等别不确定度档次界限所作出的评定; 按引用误差或其相应级别作出的评定; B类常根据-a,+a区间信息评定,认为落在区间外的概率极小的; 数显仪器量化误差和数据修约引起不确定度; 若为均匀、三角、梯形分布,其外概率为0,故为。5、标准不确定度一览表(包括A、B类),

46、见表2-3-8标准不确定度不确定度来源标准不确定度值灵敏系数自由度6、合成标准不确定度(1)合成不确定度的量值1)当各输入量xi彼此独立不相关时,则合成标准不确定度2)当=1时,则3)当输入量之间相关时,要考虑相关系数=r(rij)在检测中,只取-1,0,+1。a、当=0 ,合成时用均方根法;b、当=-1,合成时用线性相减;c、当=+1,合成时用线性相加。(2)合成标准不确定度的自由度有效自由度可由韦尔奇萨特斯韦特(Welch-Satterthwaite)公式计算:式中:合成标准不确定度灵敏系数各输入量标准不确定度,且相互独立的自由度有效自由度,且,计算结果修约时其值只能舍,不许进。7、扩展不

47、确定度U或UP可用合成不确定度乘以包含因子k得到扩展不确定度,即或。对于包含因子的选择:(1)在合成不确定度确定后,要乘以包含因子k,则k=2-3。 说明:a、y接近正态分布,有效自由度较大 b、一般取k=2; c、当取其它值时,应说明其来源。(2)如果的自由度较小、并要求区间具有规定的置信水准p、则kp采用t分布临界值,即简称t值,从查t分布表得到。说明:a、y接近正态分布,kp才取t值; b、一般p值为99%和95%,多数情况采用p =95%; c、只有在校准、检定时,根据规定,才取p =99%; d、当充分大时,近似认为k95=2,k99=3。(3)y不是正态分布,而且接近于其它某种分布

48、,就不能用k=2-3或。若y为矩形分布,则U95时,kp=1.65;U99时,kp=1.71。8、报告与表示(1)报告用合成不确定度用于基础计量学研究,基本物理常量测量等。(2)报告用扩展不确定度一般情况都适用,用U或Up来表示。1)报告通常应给出以下数值:a、合成不确定度;b、有效自由度;c、扩展不确定度U、Up ,或相对扩展不确定度Urel ,Uprel ;d、包含因子k、kp。2)报告基本形式,以y=100.02147g(算术平均值)为例:a、可用以下两种形式之一:ms=100.02147g U=0.70 mg;k=2。ms=(100.021470.00070)g;k=2。b、可用以下4

49、种形式之一:如=0.35mg,=9,按p=95%,查表得kp=t95(9)=2.26,U95=2.260.35=0.79mg,则:ms=100.02147;U95=0.79mg,=9。ms=(100.021470.00070)g;=9。ms=100.02147(79)g;=9,注意79与47对齐。ms=100.02147(0.00079)g;=9。c、也可以相对形式Urel报告ms=100.02147(17.910-6)g;P=95,式中7.910-6为U95rel值。ms=100.02147g;U95rel=7.910-6。3)扩展不确定度U通常取12位有效数字、计算过程中保留多位(多少位未规定),U在修约时只许进位,而不能舍去,而且估计值y的尾数要与扩展不确定度尾数对齐。(3)不确定度对于检测的几点说明1)对检测项目,有些A类为主,B类可忽略;有些不能作重复试验,只有B类无A类。2)对检测项目,给不确定度可简化:a、可不给自由度;b、合成时可以不考虑相关;c、k可以统一取2;d、某些公认的检测方法,在遵守相关要求下,可视为符合要求。3)检测项目必给不确定度情况:a、当不确定度与检测结果的有效性或应用有关时;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论