版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2014年上海市高三年级 六校联考 数学试卷(理科) 2014年3月6日(完卷时间120分钟,满分150分)一、填空题(本大题满分56分)本大题共有14题,只要求将最终结果直接填写答题纸上相应的横线上,每个空格填对得4分,否则一律得零分1. 已知,则 2. 已知集合,若,则实数的取值范围是 开始输入?输出结 束否是3. 设等差数列的前项和为,若,则等于 4. 若是纯虚数(是虚数单位),则实数的值为 5. 抛物线的焦点到双曲线的渐近线的距离是 6. 执行右图的程序框图,如果输入,则输出的值为 7. 不等式对任意恒成立,则实数的取值范围是 8. 若是展开式中项的系数,则 9. 已知一个圆锥的侧面展
2、开图是一个半径为,圆心角为的扇形,则此圆锥的体积为 10. 若点在曲线(为参数,)上,则的取值范围是 11. 从这个整数中任意取个不同的数作为二次函数的系数,则使得的概率为 12. 已知点为椭圆的左焦点,点为椭圆上任意一点,点的坐标为,则取最大值时,点的坐标为 13、已知、为直线上不同的三点,点直线,实数满足关系式,有下列命题:; ; 的值有且只有一个; 的值有两个; 点是线段的中点则正确的命题是 (写出所有正确命题的编号)14、已知数列的通项公式为,数列的通项公式为,设若在数列中,对任意恒成立,则实数的取值范围是 二、选择题(本大题满分20分)本大题共有4题,每题都给出代号为a、b、c、d的
3、四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应的正确代号用2b铅笔涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分15、若,则“成立”是“成立”的 ( )(a)充分非必要条件 (b)必要非充分条件(c)充要条件 (d)既非充分又非必要条件16、下列函数中,既是偶函数,又在区间内是增函数的为 ( )(a) (b)(c) (d)17、已知和是两条不同的直线,和是两个不重合的平面,下面给出的条件中一定能推出的是 ( )(a)且 (b)且 (c)且 (d)且18、对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”给出下列4个函数:; ; 其中
4、存在唯一“可等域区间”的“可等域函数”为 ( )(a) (b) (c) (d)三、解答题(本大题共5题,满分74分)每题均需写出详细的解答过程19、(本题满分12分)本题共有2小题,第(1)小题满分6分,第(2)小题满分6分在中,角、所对的边长分别为、,且 (1)若,求的值;(2)若,求的取值范围20、(本题满分14分)本题共有2小题,第(1)小题满分7分,第(2)小题满分7分如图,几何体中,为边长为的正方形,为直角梯形,(1)求异面直线和所成角的大小;(2)求几何体的体积21、(本题满分14分) 本题共有2小题,第(1)小题满分7分,第(2)小题满分7分为了保护环境,某工厂在国家的号召下,把
5、废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?22、(本题满分16分)本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分已知数列中,对任意的,、成等比数列,公比为;、成等差数列,公差为,且(1)写出数列的前四项;(2)设,求数列的通项公式;(3)求数列的前项和23、(本题满分18分)本
6、题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分如图,圆与直线相切于点,与正半轴交于点,与直线在第一象限的交点为. 点为圆上任一点,且满足,动点的轨迹记为曲线(1)求圆的方程及曲线的方程;(2)若两条直线和分别交曲线于点、和、,求四边形面积的最大值,并求此时的的值(3)证明:曲线为椭圆,并求椭圆的焦点坐标2014年上海市高三年级 六校联考 数学试卷(理科)答案一、填空题1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13 14二、选择题15. c 16. a 17. c 18. b三、解答题19.解:(1)在中,所以,所以 3分由余弦
7、定理,得解得或 6分(2). 9分由(1)得,所以,则. .的取值范围是. 12分20.解:(1)解法一:在的延长线上延长至点使得,连接.由题意得,平面,平面,同理可证面. ,为平行四边形,.则(或其补角)为异面直线和所成的角. 3分由平面几何知识及勾股定理可以得在中,由余弦定理得 异面直线的夹角范围为, 异面直线和所成的角为 7分解法二:同解法一得所在直线相互垂直,故以为原点,所在直线分别为轴建立如图所示的空间直角坐标系, 2分可得, ,得. 4分设向量夹角为,则 异面直线的夹角范围为, 异面直线和所成的角为 7分()如图,连结,过作的垂线,垂足为,则平面,且. 9分 11分. 几何体的体积
8、为.14分21.解:(1)根据题意得,利润和处理量之间的关系: 2分,. ,在上为增函数,可求得. 5分 国家只需要补贴万元,该工厂就不会亏损 7分(2)设平均处理成本为 9分, 11分当且仅当时等号成立,由 得因此,当处理量为吨时,每吨的处理成本最少为万元 14分22. 解:(1)由题意得 ,或. 2分故数列的前四项为或. 4分(2)成公比为的等比数列, 成公比为的等比数列,又成等差数列,.得, 6分,即. 数列数列为公差等差数列,且或. 8分或. 10分(3)当时,由(2)得.,. 13分当时,同理可得,. 16分解法二:(2)对这个数列,猜想, 下面用数学归纳法证明:)当时,结论成立.
9、)假设时,结论成立,即.则时,由归纳假设,. 由成等差数列可知,于是, 时结论也成立.所以由数学归纳法原理知. 7分此时.同理对这个数列,同样用数学归纳法可证. 此时.或. 10分(3)对这个数列,猜想奇数项通项公式为.显然结论对成立. 设结论对成立,考虑的情形.由(2),且成等比数列,故,即结论对也成立.从而由数学归纳法原理知.于是(易见从第三项起每项均为正数)以及,此时. 13分对于这个数列,同样用数学归纳法可证,此时.此时. 16分23. 解:(1)由题意圆的半径,故圆的方程为. 2分由得,即,得()为曲线的方程.(未写范围不扣分)4分(2)由得,所以,同理. 6分由题意知 ,所以四边形的面积., , . 8分当且仅当时等号成立,此时. 当时,四边形的面积最大值为. 10分(3)曲线的方程为(),它关于直线、和原点对称,下面证明:设曲线上任一点的坐标为,则,点关于直线的对称点为,显然,所以点在曲线上,故曲线关于直线对称,同理曲线关于直线和原点对称.可以求得和直线的交点坐标为和直线的交点坐标为,.在上取点 . 下面证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度设备租赁合同租赁设备及租赁期限详细规定
- 人教版九年级化学第四单元自然界的水3水的组成教学课件
- 2024年度加工承揽合同:某企业委托加工厂生产产品的合同3篇
- 菏泽学院《口语能力训练》2022-2023学年第一学期期末试卷
- 项目投资合作协议合同
- 2024年度城市基础设施建设项目施工合同安全保障条款3篇
- 钢板桩租赁合同完整版
- 基础蹲礼仪培训
- 购销合同范本苗木书书3篇
- 《基本图形光栅化》课件
- 锦鲤养殖商业计划书
- 2024公基常识试题及答案解析(980题)
- 《酒精性心肌病》
- 2023-2024学年成都市锦江区九年级上英语(一诊)期末考试题(含答案)
- DB37T 5235-2022 建筑施工附着式升降脚手架安全技术管理规程
- 一国两制课件
- 2024年蜀道集团招聘笔试参考题库含答案解析
- 量子随机数生成器
- 小沟小学 国有资产管理内部控制流程图
- 家政公司和社区合作协议
- 第39课+眼鏡をかけて本を読みます+-高中日语新版标准日本语初级下册
评论
0/150
提交评论