




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、哈尔滨师范大学学 年 论 文题 目 矩阵的若尔当标准型及简单应用学 生 李小琴指导老师 穆强年 级 2005级专 业 数学与应用数学系 别 数学系学 院 数学与计算机科学学院哈尔滨师范大学07年6月矩阵的及若尔当标准型及简单应用李小琴摘 要:复数域上的每一阶矩阵都与若尔当标准形式相似,本文论证了矩阵的若尔当标准型及简单应用.关键词:若尔当 线性变换 矩阵 标准定义1 设是一个复数,矩阵 ( 1 )其中主对角上的元素都是,紧邻主对角线下方的元素都是1,其余位置都是零,叫做属于的一个若尔当(或若尔当块).当=0时,就是所谓的幂零若尔当矩阵.定理1 设是维向量空间的一个线性变换,都是的一切互不相同的
2、本征值,那么存在的一个基,似的关于这个基的矩阵有形状 ( 2 )这里=,而都是属于的若尔当块,证 设的最小多项式是,而在复数域上是不可约的因式分解,这里是互不相同的本征值,是正整数,又设=ker ,所以空间有直和分解=对于每一,令是在上的限制,那么是子空间的一个幂零线性变换,而子空间可以分解为一循环子空间的直和:.在每一循环子空间里,取一个循环基,凑成的一个基,那么关于这个基的矩阵有形状这里是幂零若尔当块.令,那么=+,于是对于加上基来说,的矩阵是这里都是属于的若尔当块.对于每一子空间,按以上方式选取一个基,凑起来成为的基,那么关于这个基的矩阵就是有定理所求的形式(2).注意 在矩阵(2)里,
3、主对角上的第块,是的矩阵.而子空间显然由唯一确定,而出现在每一里的若尔当块里由唯一确定的,因而是由唯一确定.定义2 形式如的阶矩阵,其中每一都是一个若尔当块,叫做一个若尔当标准形式.例如:都是若尔当标准形式.定理2 复数域上每一阶矩阵都与一个当尔当标准形式相似,除了各若尔当块排列的次序外,与相似的若尔当标准形式是由唯一确定的.证 在一个对角线分块矩阵里,重新排列各个小块矩阵的次序显然得到矩阵,在由若尔当块唯一性得到证明.定理3 (1)设为上的维线性空间,线性变换:的特征多项式分解为上的一次式的积.,这里,是弱特征空间的直和=,又,dim=,在上的限制|的特征多项式和最小多项式为(2)设矩阵(,
4、)的特征多项式分解为上一次式的积.det,这时,存在正则矩阵,方阵的结束等于,构成的若尔当的个数等于属于的特征空间多项式的维数若尔当块矩阵称为矩阵的若尔当.注意 中的,其阶若尔当块的个数又唯一确定.例1 证明对,(,),存在正则矩阵,使=和具有相等的若尔当标准型.证 设和具有相等的若尔当标准型,则存在正则矩阵,使=,=,令=,则正则接=.反之,设已存在正则矩阵,使=,设是若尔当标准型,则,故的若尔当标准型也是.例2 求矩阵=,的若尔当标准型,求实矩阵使成为若尔当矩阵.解 (1),rank,故特征空间(5)的维数是3 rank (-5)=2,于是机若尔当块的个数为2,的若尔当标准型为.(2) 方
5、程(+2)=0的通解为=.例如,令=1,得=,dim=(-2)=1,(-3)=0,的通解是=,所以属于特征值3的特征空间(3)的维数是1.故属于特征值3的若尔当块是1个. 例如,令=1,得=,方程(-3)=的通解是例如,令,得=,= - 2,= 3,=+3.故若令( ),则=( )=(-2 3 +3)=,所以=,.参考文献: 1 张禾瑞 、郝炳新:高等代数,高等教育出版社,1999年第四版. 2 有马哲 、浅枝阳:线性代数讲解,四川人民出版社,1987年版.Matrix And JordanSummary : Each rank matrixes of plural area with if the Jordan be a standard form likeness,this text argument matrixes of if Jordan be standard type and in brief applied.Keyword : The Jordan the line transformation matrix standard 学年论文(设计)成绩表论文题目矩阵的若尔当标准型及简单应用作者李小琴指导教师穆强职称讲师指导教师评语该论文具体论述了矩阵的若尔当标准形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大客户快递合同协议
- 盘锦广播买卖房合同协议
- 直播授权协议书范本
- 声优入职合同协议
- 物业保洁安全协议书
- 石材废渣处理协议书范本
- 礼服清仓供货合同协议
- 情绪创意美术课件
- 内蒙古乌兰察布市化德县2025年初三第一次调研联考生物试题试卷含解析
- 山东省潍坊市诸城龙源校2024-2025学年初三第三次诊断考试生物试题(文、理)试卷含解析
- (完整版)英语四级词汇表
- 消防控制室值班记录(制式表格)63052
- 技工学校国家助学金申请表
- 中国法兰锻件行业市场需求研究及前景趋势分析报告2024-2030年
- 重型燃气轮机用大型铸锻件 第3部分:铸钢件 编制说明
- 重大事故隐患判定标准培训记录、培训效果评估
- 2024年湖北省中考地理生物试卷(含答案)
- 2024年甘肃省天水市中考生物·地理试题卷(含答案)
- 诗词接龙(飞花令)六
- 21《庄子》二则 北冥有鱼 公开课一等奖创新教案
- 人力资源管理与创新创业实践智慧树知到期末考试答案2024年
评论
0/150
提交评论