




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、原子物理课本课后题答案 原子物理学习题解答 刘富义 编 临沂师范学院物理系理论物理教研室 第一章 原子的基本状况1.1 若卢瑟福散射用的a粒子是放射性物质镭C放射的,其动能为7.6810电子伏6特。散射物质是原子序数Z=79的金箔。试问散射角q=150o所对应的瞄准距 刻苦学习的重要性(1)节制。控制饮食,可以获得健康;控制金钱,可以获得财富;控制恶习,可以获得成功。(2)寡言。言必于人于己有益。避免无益的聊天。(3)生活秩序。东西要放在固定的地方;每件日常事务当有一定的时间去做。(4)决心。当做必做,决心要做的初中学生家长教育观的误区 中学时期是人生发展的关键时期,是学生开发智力形成良好的思
2、想道德品质的奠基阶段,也是最容易困惑的青春期。如何对中学生尤其是初中生优化教育,使其在德、智、体、美、劳等方面得到全面健康的发展,历来是教师、家长乃至社会特别关注的问题 原子物理学习题解答 刘富义 编 临沂师范学院物理系理论物理教研室 第一章 原子的基本状况1.1 若卢瑟福散射用的a粒子是放射性物质镭C放射的,其动能为7.6810电子伏6特。散射物质是原子序数Z=79的金箔。试问散射角q=150o所对应的瞄准距离b多大?解:根据卢瑟福散射公式:ctgpe0=4得到:KaMv2b=4peb 0222ZeZeoZe2ctg79(1.601019)2ctg150-15b=3.9710米 -126-1
3、94pe0Ka(4p8.8510)(7.681010)式中Ka2=Mv是a粒子的功能。1.2已知散射角为q的a粒子与散射核的最短距离为2Ze21r=()(1+) ,试问上题a粒子与散射的金原子核m240Mvsin1之间的最短距离rm多大?解:将1.1题中各量代入rm的表达式,得:rmin2Ze21=()(1+) 240Mvsin1479(1.6010-19)21=910(1+)6-197.68101.6010sin759=3.0210-14米1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个+e电荷而质量是
4、质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。根据上面的分析可得:o1Ze22Mv=Kp=240rmin9,故有:rminZe2=40Kp 79(1.6010-19)2=910=1.1410-13米 6-19101.6010由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为1.14107-13米。-71.4 钋放射的一种a粒子的速度为1.59710米/秒,正面垂直入射于厚度为10米
5、、密度为1.932104公斤/米3的金箔。试求所有散射在q90o的a粒子占全部入射粒子数的百分比。已知金的原子量为197。解:散射角在q:q+dq之间的a粒子数dn与入射到箔上的总粒子数n的比是:dn=Ntdsn 其中单位体积中的金原子数:N =r/mAu=rN0/AAu而散射角大于90的粒子数为:dn=dn=nNtpds所以有:dn=Ntpdsn =rN0AAut(140)2p(2Ze2180odq )90o2Musin322cosq180等式右边的积分:I=90oocossin3qodq=218090odsinsin3q=1 22故dnrN122Ze22=t()p() 2nAAu4pe0M
6、u8.510-6=8.510-4即速度为1.597107米/秒的a粒子在金箔上散射,散射角大于90o以上的粒子数大约是8.510-4。1.5时与理论值差得较远,时什么原(q15o)a粒子散射实验的数据在散射角很小因?答:a粒子散射的理论值是在“一次散射“的假定下得出的。而a粒子通过金属箔,经过好多原子核的附近,实际上经过多次散射。至于实际观察到较小的q角,那是多次小角散射合成的结果。既然都是小角散射,哪一个也不能忽略,一次散射的理论就不适用。所以,a粒子散射的实验数据在散射角很小时与理论值差得较远。1.6 已知a粒子质量比电子质量大7300倍。试利用中性粒子碰撞来证明:a粒子散射“受电子的影响
7、是微不足道的”。证明:设碰撞前、后a粒子与电子的速度分别为:v,v,0,ve。根据动量守恒定律,得:rrrrrrMva=Mva+mverrmr1r (1) 由此得:vve=va-va=M7300e11222 又根据能量守恒定律,得:1Mva=Mva+mve2222va=va+2m2 (2)vMe 将(1)式代入(2)式,得:vv222va=va+7300(va-va) 22vavacosq=0 整理,得:va(7300-1)+va(7300+1)-27300Q73001vv2上式可写为:7300(va-va)=0 vvva-va=0-2即a粒子散射“受电子的影响是微不足道的”。1.7能量为3.
8、5兆电子伏特的细a粒子束射到单位面积上质量为1.0510o公斤/米2的-5银箔上,a粒子与银箔表面成60角。在离L=0.12米处放一窗口面积为6.010米2的计数器。测得散射进此窗口的a粒子是全部入射a粒子的百万分之29。若已知银的原子量为107.9。试求银的核电荷数Z。解:设靶厚度为t。非垂直入射时引起a度t,而是t=t/sin60,如图1-1所示。o因为散射到q与q+dq之间dW立体角内的粒子数dn与总入射粒子数n的比为:dn=Ntdsn而ds为:(1)2ds=(140)2(ze2dW()Mv2sin42把(2)式代入(1)式,得:dn12ze22dW(3) =Nt()(2)n40Mvsi
9、n42式中立体角元dW=ds/L2,t=t/sin600=2t/,q=200N为原子密度。Nt为单位面上的原子数,Nt=h/mAg=h(AAg/N0)-1,其中h是单位面积式上的质量;mAg是银原子的质量;AAg是银原子的原子量;N0是阿佛加德罗常数。将各量代入(3)式,得:dn2hN01ze22dW 2=()()nMv2AAg40sin42由此,得:Z=471.8 设想铅(Z=82)原子的正电荷不是集中在很小的核上,而是均匀分布在半径约为10-10米的球形原子内,如果有能量为106电子伏特的a粒子射向这样一个“原子”,试通过计算论证这样的a粒子不可能被具有上述设想结构的原子产生散射角大于90
10、的散射。这个 结论与卢瑟福实验结果差的很远,这说明原子的汤姆逊模型是不能成立的(原子中电子的影响可以忽略)。解:设a粒子和铅原子对心碰撞,则a粒子到达原子边界而不进入原子内部时的能量有下式决定:12Mv=2Ze2/4pe0R=3.7810-16焦耳2.36103电子伏特 2由此可见,具有10电子伏特能量的a粒子能够很容易的穿过铅原子球。a粒子在到达原子表面和原子内部时,所受原子中正电荷的排斥力不同,它们分别为:6F=2Ze2/4pe0R2和F=2Ze2r/4pe0R3。可见,原子表面处a粒子所受的斥力最大,越靠近原子的中心a粒子所受的斥力越小,而且瞄准距离越小,使a粒子发生散射最强的垂直入射方
11、向的分力越小。我们考虑粒子散射最强的情形。设a粒子擦原子表面而过。此时受力为F=2Ze2/4pe0R2。可以认为a粒子只在原子大小的范围内受到原子中正电荷的作用,即作用距离为原子的直径D。并且在作用范围D之内,力的方向始终与入射方向垂直,大小不变。这是一种受力最大的情形。根据上述分析,力的作用时间为t=D/v,a粒子的动能为Mv2=K,因此,12v=,所以,t=D/v=D根据动量定理:t Fdt=p-p0=Mv-0而Fdt=2Ze 2t2/4pe0R2tdt=2Zet/4peR2 2 所以有:2Zet/4pe0R2=Mv =2Ze2t/4pe0R2M由此可得:va粒子所受的平行于入射方向的合力
12、近似为0,入射方向上速度不变。据此,有:tgq=v=2Ze2t/4pe0R2Mv=2Ze2D/4pe0R2Mv2v=2.410-3q=2.410-3弧度,大约是8.2。这时q很小,因此tgq这就是说,按题中假设,能量为1兆电子伏特的a 粒子被铅原子散射,不可能产生散射角q900的散射。但是在卢瑟福的原子有核模型的情况下,当a粒子无限靠近原子核时,900的散射,甚至会产生q1800的散会受到原子核的无限大的排斥力,所以可以产生q射,这与实验相符合。因此,原子的汤姆逊模型是不成立的。 第二章 原子的能级和辐射h22.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。 解:电子在第
13、一玻尔轨道上即年n=1。根据量子化条件,pf=mvr=n vnhh=可得:频率 n=22pa12pma12pma12=6.581015赫兹速度: v=2pa1n=h/ma1=2.188106米/秒22222w=v/r=v/a=9.04610米/秒加速度: 12.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。 解:电离能为Ei=E-E1,把氢原子的能级公式En=-Rhc/n2代入,得:11Ei=RHhc(2-)=Rhc=13.60电子伏特。1电离电势:Vi=Ei=13.60伏特 e1133E=Rhc(-)=Rhc=13.60=10.20电子伏特 第一激发能:iH4412第一激
14、发电势:V1=E1=10.20伏特 e2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?解:把氢原子有基态激发到你n=2,3,4等能级上去所需要的能量是:11E=hcRH(2-2) 其中hcRH=13.6电子伏特1n1E1=13.6(1-2)=10.2电子伏特21E2=13.6(1-2)=12.1电子伏特31E3=13.6(1-2)=12.8电子伏特4其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有12.5电子伏特能量的电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。跃迁时可能发出
15、的光谱线的波长为:1l11=RH(11-2)=5RH/36223ol1=6565A113=RH(2-2)=RHl2412 l2=1215A118=RH(2-2)=RHl39131ol3=1025A2.4 试估算一次电离的氦离子He、二次电离的锂离子Li的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。 a) 氢原子和类氢离子的轨道半径:+o4pe0h2n2n2r=2=a1,n=1,2,3Z4pmZe24pe0h2其中a1=22=0.52917710-10米,是氢原子的玻
16、尔第一轨道半径;4pme+Z是核电荷数,对于H,Z=1;对于H,Z=2;对于Li,Z=3;rHe+ZHZ1rLi+1因此,玻尔第一轨道半=,=H=rHZH+2rHZLi+3eb) 氢和类氢离子的能量公式:2p2me4Z2Z2E=-=E12,n=1,2,3 222(4pe0)nhn2p2me4-13.6电子伏特,是氢原子的基态能量。其中E1=-(4pe0)2h2电离能之比:20-EHe+ZHe=2=4,0-EHZH2ZLi+0-ELi+=920-EHZHc) 第一激发能之比:2222E12-E1221EHe-EHe=4=21EH-EH1212E12-E1221 2233E-E211212ELi-
17、ELi=9=212EH-EH112E12-E1221d) 氢原子和类氢离子的广义巴耳末公式:11n1=1,2,32v=ZR(2-2),n2=(n1+1),(n1+2)n1n22p2me4其中R=是里德伯常数。(4pe0)2h3氢原子赖曼系第一条谱线的波数为:111Hv1=R(2-2)=H12l相应地,对类氢离子有: He+=22R(1-1)=1v11222l1He+111Li+2v1=3R(2-2)=Li+12l1因此,He+Li+l11l11=,= HH4l19l1 2.5 试问二次电离的锂离子Li从其第一激发态向基态跃迁时发出的光子,是否有可能使处于基态的一次电离的氦粒子He的电子电离掉?
18、解:Li由第一激发态向基态跃迁时发出的光子的能量为:+He+的电离能量为:+11vHe=4hcRHe(2-)=4hcRHe1hvLi+27RLi271+m/MHe=hvHe+16RHe161+m/MLi 由于MHe1+m/MLi,hvHe+,所以能将He+的电子电离掉。从而有hvLi+2.6 氢与其同位素氘(质量数为2)混在同一放电管中,摄下两种原子的光谱线。试问其巴耳末系的第一条(Ha)光谱线之间的波长差Dl有多大?已知氢的里德伯常数RH=1.0967758107米-1,氘的里德伯常数RD=1.0970742107米-1。解:1lH1=RH(=RD(11-2),lH=36/5RH 223lD
19、11-2),lD=36/5RD 223Dl=lH-lD=1.79Ao3611(-)5RHRD2.7 已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子结构的“正电子素”。试计算“正电子素”由第一激发态向基态跃迁发射光谱的波长l为多少A?解:o11133=Re+e-(2-2)=R=R48l121+mo81l=米=2430A3R31097373112.8 试证明氢原子中的电子从n+1轨道跃迁到n轨道,发射光子的频率nn。当n1时光子频率即为电子绕第n玻尔轨道转动的频率。证明:在氢原子中电子从n+1轨道跃迁到n轨道所发光子的波数为:=1=R1-1 vnnn2(n+1)2频率为:vn=cl=Rc
20、112n+1-=Rc 2222n(n+1)n(n+1)2当n时,有(2n+1)/n(n+1)22n/n4=2/n3,所以在n1时,氢原子中电子从n+1轨道跃迁到n轨道所发光子的频率为:vn设电子在第n轨道上的转动频率为=2Rc/n3。fn,则fn=vmvrP2Rc= 2232pr2pmr2pmrn因此,在n1时,有vn=fn由上可见,当n1时,请原子中电子跃迁所发出的光子的频率即等于电子绕第n玻尔轨道转动的频率。这说明,在n很大时,玻尔理论过渡到经典理论,这就是对应原理。2.9 Li原子序数Z=3,其光谱的主线系可用下式表示:=vRR+。已知锂原子电离成离子需要203.44电子伏特的Li-22
21、(1+0.5951)(n-0.0401)+功。问如把Li离子电离成Li离子,需要多少电子伏特的功?解:与氢光谱类似,碱金属光谱亦是单电子原子光谱。锂光谱的主线系是锂原子的价电子由高的p能级向基态跃迁而产生的。一次电离能对应于主线系的系限能量,所以Li离子+电离成Li+离子时,有E1=RhcRhcRhc-=5.35电子伏特 22(1+0.5951(1+0.5951)Li+是类氢离子,可用氢原子的能量公式,因此Li+Li+时,电离能E3为:Z2Rhc2RE3=ZRhc=122.4电子伏特。 21设Li+Li+的电离能为E2。而LiLi+需要的总能量是E=203.44电子伏特,所以有E2=E-E1-
22、E3=75.7电子伏特2.10 具有磁矩的原子,在横向均匀磁场和横向非均匀磁场中运动时有什么不同? 答:设原子的磁矩为m,磁场沿Z方向,则原子磁矩在磁场方向的分量记为mZ,于是具有磁矩的原子在磁场中所受的力为对均匀磁场,F=mZBB,其中是磁场沿Z方向的梯度。ZZB=0,原子在磁场中不受力,原子磁矩绕磁场方向做拉摩进动,且对磁场ZB0原子在磁场中除做上述运动外,还的 取向服从空间量子化规则。对于非均磁场,Z受到力的作用,原子射束的路径要发生偏转。2.11 史特恩-盖拉赫实验中,处于基态的窄银原子束通过不均匀横向磁场,磁场的梯度为B=103特斯拉/米,磁极纵向范围L1=0.04米(见图2-2),
23、从磁极到屏距离L2=0.10米,Z2原子的速度v=510米/秒。在屏上两束分开的距离d=0.002米。试确定原子磁矩在磁场方向上投影m的大小(设磁场边缘的影响可忽略不计)。解:银原子在非均匀磁场中受到垂直于入射方向的磁场力作用。其轨道为抛物线;在L2区域粒子不受力作惯性运动。经磁场区域L1后向外射出时粒子的速度为v,出射方向与入射方向间的夹角为q。q与速度间的关系为:tgqv=vv粒子经过磁场L1出射时偏离入射方向的距离S为:S=1BL12()mZ(1)2mZv将上式中用已知量表示出来变可以求出mZfmB=,t=L1/vmmZmBL1v=ZmZv mZBL1L2S=L2tgq=mZv2ddmB
24、L1L2S=-S=-Z22mZv2v=at,a=把S代入(1)式中,得:dmZBL1L2mZBL1-=2mZv22mZv2整理,得:2mZBL12mZv(L1+2L2)=2d2由此得:mZ=0.9310-23焦耳/特32.12 观察高真空玻璃管中由激发原子束所发光谱线的强度沿原子射线束的减弱情况,可以测定各激发态的平均寿命。若已知原子束中原子速度v=10米/秒,在沿粒子束方向上相距1.5毫米其共振光谱线强度减少到1/3.32。试计算这种原子在共振激发态的平均寿命。解:设沿粒子束上某点A和距这点的距离S=1.5毫米的 B点,共振谱线强度分别为I0和I1,并设粒子束在A点的时刻为零时刻,且此时处于
25、激发态的粒子数为N20,原子束经过t时间间隔从A到达B点,在B点处于激发态的粒子数为N2。光谱线的强度与处于激发态的原子数和单位时间内的跃迁几率成正比。设发射共振谱线的跃迁几率为A21,则有I1ANN212=2 I0A21N20N20适当选取单位,使I1N2=1/3.32, I0N20并注意到N2=N20e-A21t,而t=S/v,则有:N2=e-A21t=1/3.32 N20由此求得:1vA21=(ln3.32-ln1)=ln3.32ts1s1.510-3t=A21vln3.32103ln3.32=1.2510-6秒 第三章 量子力学初步3.1 波长为1A的X光光子的动量和能量各为多少? 解
26、:根据德布罗意关系式,得:o6.6310-34-24-1=6.6310千克米秒动量为:p=l10-10h能量为:E=hv=hc/l=6.6310-343108/10-10=1.98610-15焦耳。3.2 经过10000伏特电势差加速的电子束的德布罗意波长l=? 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:l=h/meV 对于电子:m=9.1110-31公斤,e=1.6010-19库仑把上述二量及h的值代入波长的表示式,可得:o12.25o12.25ol=A=A=0.1225A对于质子,m=1.6710-27公斤,e=1.6010-19库仑,代入波长的
27、表示式,得:l=6.62610-3421.6710-271.6010-1910000=2.86210A-3o12.25oA的电子德3.3 电子被加速后的速度很大,必须考虑相对论修正。因而原来l=布罗意波长与加速电压的关系式应改为:o12.25-6l=(1-0.48910V)A其中V是以伏特为单位的电子加速电压。试证明之。证明:德布罗意波长:l=h/p对高速粒子在考虑相对论效应时,其动能K与其动量p之间有如下关系:K2+2Km0c2=p2c2而被电压V加速的电子的动能为:K2=eV(eV)2p=2+2m0eVcp=2m0eV+(eV)2/c2因此有:l=h/p=hm0eV1+eV2m0c22 一
28、般情况下,等式右边根式中eV/2m0c一项的值都是很小的。所以,可以将上式的根式作泰勒展开。只取前两项,得:l=heVh-6(1-)=(1-0.48910V) 24m0cm0eVm0eV12.25oA,其中V以伏特为单位,代回原式得: 由于上式中h/2m0eVo12.25-6l=(1-0.48910V)A由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。证明:轨道量子化条件是:对氢原子圆轨道来说,所以有:pdq=nh2pr=0,pf=
29、mrf=mvrpdf=2pmvr=nhhS=2pr=n=nl,n=1,2,3mv所以,氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波长。椭圆轨道的量子化条件是:pfdf=nfh pdr=nhrr其中pr=mr,pf=mrf(prdr+pfdf)=nh,其中n=nf+nr而2 (pdr+pfdf)=(mrdr+mrr2fdf)dfdr2=(mrdt+mrfdt)dtdt=mv2dt=mvdshds=hrlds=n l因此,椭圆轨道也正好包含整数个德布罗意波波长。3.5 带电粒子在威耳孙云室(一种径迹探测器)中的轨迹是一串小雾滴,雾滴德线度约为1微米。当观察能量为1000电子伏特的电子径迹时其
30、动量与精典力学动量的相对偏差不小于多少?解:由题知,电子动能K=1000电子伏特,Dx=10米,动量相对偏差为Dp/p。 根据测不准原理,有DpDx经典力学的动量为:-6hh,由此得:Dp 22Dxp=Dph =3.0910-5p2Dx2mK电子横向动量的不准确量与经典力学动量之比如此之小,足见电子的径迹与直线不会有明显区别。3.6 证明自由运动的粒子(势能V0)的能量可以有连续的值。 证明:自由粒子的波函数为:y=Aeivv+(pr-Et)h(1)h22 (2) 自由粒子的哈密顿量是:H=-2m自由粒子的能量的本征方程为:Hy=Ey (3)ivv(pr-Et)h22+hAe=Ey 把(1)式
31、和(2)式代入(3)式,得:-2m即:h22d2d2d2+h(pxx+pyy+pzz-Et)-A(2+2+2)e=Ey2mdxdydzp2y=Ey2mp2E=2m自由粒子的动量p可以取任意连续值,所以它的能量E也可以有任意的连续值。 3.7 粒子位于一维对称势场中,势场形式入图3-1,即i0xL,V=0xL,V=V0 (1)试推导粒子在EV0情况下其总能量E满足的关系式。(2)试利用上述关系式,以图解法证明,粒子的能量只能是一些不连续的值。 解:为方便起见,将势场划分为三个区域。d2y(x)2m+2(E-V(x)y(x)=0 (1) 定态振幅方程为2dxh式中m是粒子的质量。d2y2m22-a
32、y=0其中a=(V0-E) 区:22dxh波函数处处为有限的解是:y1(x)=。 Aeax,A是一任意常数d2y2m22+by=0其中b=E 区:22dxh处处有限的解是:y2(x)=Bsin(bx+g),B,g是任意常数。d2y2m22-ay=0其中a=(V0-E) 区:22dxh处处有限的解是:y3(x)=De有上面可以得到:-ax,D是任意常数。1dy11dy21dy3=a,=bctg(bx+g),=-a,y1dxy2dxy3dx有连续性条件,得:a=ctgga-=ctg(bL+g) b解得:bb+tg(bL)=-b21-2因此得:bL=np -2tg-1(b/a)这就是总能量所满足的关
33、系式。(2) 有上式可得:bnpbL=tg(-) a22=2bLctgn=奇数2-tgbLn=偶数,包括零 aL=-(bL)ctg亦即bL2 aL=(bL)tg令bL2bL=u,aL=v,则上面两方程变为:uv=-utg(1)2 uv=utg(2)2另外,注意到u和v还必须满足关系:u2+v2=2mV0L2/h2(3)所以方程(1)和(2)要分别与方程(3)联立求解。3.8 有一粒子,其质量为m,在一个三维势箱中运动。势箱的长、宽、高分别为a、b、c在势箱外,势能V=;在势箱内,V=0。式计算出粒子可能具有的能量。解:势能分布情况,由题意知:Vx=0,0xa;Vy=0,0yb;Vz=0,0zc
34、; Vx=,xaVy=,ybVz=,zc在势箱内波函数y(x,y,z)满足方程:2y2y2y2m+2+2+2E-(Vx+Vy+Vz)y=0 22x2y2zh解这类问题,通常是运用分离变量法将偏微分方程分成三个常微分方程。令y(x,y,z)=X(x)Y(y)Z(z)代入(1)式,并将两边同除以X(x)Y(y)Z(z),得:1d2X2m1d2Y2m1d2Z2m2m(-V)+(-V)+(-V)=-E xyz2222222XdxYdyZdzhhhh方程左边分解成三个相互独立的部分,它们之和等于一个常数。因此,每一部分都应等于一个常数。由此,得到三个方程如下:1d2X2m2m-V=-Exx222Xdxh
35、h1d2Y2m2m-V=-Eyy222Ydyhh 1d2Z2m2m-V=-Ez2Zdz2h2zh其中E=Ex+Ey+Ez,Ex,Ey,Ez皆为常数。将上面三个方程中的第一个整数,得:d2X2m+2(Ex-Vx)X=0(2) 2dxh边界条件:X(0)=X(l)=0可见,方程(2)的形式及边界条件与一维箱完全相同,因此,其解为:npsinxxaa 22ph2Ex=n,nx=1,2,32x2paXn=类似地,有npsinyybbp2h22Ey=ny,ny=1,2,322pbnpZn=sinzzcc22ph2Ez=nz,nz=1,2,322pcnxpxnypynzpz8y(x,y,z)=sinsin
36、sinabcabc2p2h2nx2nynz2E=(+)2ma2b2c2Yn=可见,三维势箱中粒子的波函数相当于三个一维箱中粒子的波函数之积。而粒子的能量相当于三个一维箱中粒子的能量之和。对于方势箱,a=b=c,波函数和能量为:nxpxnypynzpzy(x,y,z)=3sinsinsinaaa ap2h222222E=n,n=n+n+nxyz2ma2第四章 碱金属原子4.1 已知Li原子光谱主线系最长波长l=6707A,辅线系系限波长l=3519A。求oo锂原子第一激发电势和电离电势。解:主线系最长波长是电子从第一激发态向基态跃迁产生的。辅线系系限波长是电子从无穷处向第一激发态跃迁产生的。设第
37、一激发电势为V1,电离电势为V,则有:eV1=hV1=cl hc=1.850伏特lecceV=h+hllV=hc11(+)=5.375伏特。elloo4.2 Na原子的基态3S。已知其共振线波长为5893A,漫线系第一条的波长为8193A,基线系第一条的波长为18459A,主线系的系限波长为2413A。试求3S、3P、3D、4F各谱项的项值。解:将上述波长依次记为oolpmax,ldmax,lfmax,lp,即lpmax=5893A,ldmax=8193A,lfmax=18459A,lp=2413A容易看出:oooo =T3S=vT3P=11P-=4.144106米-11=2.447106米-
38、1 lPlpmax1T3D=T3p-T4F=T3D-ldmax1=1.227106米-1=0.685106米-1oolfmax4.3 K原子共振线波长7665A,主线系的系限波长为2858A。已知K原子的基态4S。试求4S、4P谱项的量子数修正项Ds,Dp值各为多少?解:由题意知:lpmax由T4S=1/l =7665A,lp=2858A,T4s=vPPoo=R,得:4-Ds=k4S(4-Ds)21设RKR,则有Ds=2.229,T4P=P-1Pmax 与上类似Dp4-4P=1.7644.4 Li原子的基态项2S。当把Li原子激发到3P态后,问当3P激发态向低能级跃迁时可能产生哪些谱线(不考虑
39、精细结构)?答:由于原子实的极化和轨道贯穿的影响,使碱金属原子中n相同而l不同的能级有很大差别,即碱金属原子价电子的能量不仅与主量子数n有关,而且与角量子数l有关,可以记为E=E(n,l)。理论计算和实验结果都表明l越小,能量越低于相应的氢原子的能量。当从3P激发态向低能级跃迁时,考虑到选择定则:Dl以下能级跃迁产生:3P3S;3S2P;2P2S;3P2S。4.5 为什么谱项S项的精细结构总是单层结构?试直接从碱金属光谱双线的规律和从电子自旋与轨道相互作用的物理概念两方面分别说明之。答:碱金属光谱线三个线系头四条谱线精细结构的规律性。第二辅线系每一条谱线的二成分的间隔相等,这必然是由于同一原因
40、。第二辅线系是诸S能级到最低P能级的跃迁产生的。最低P能级是这线系中诸线共同有关的,所以如果我们认为P能级是双层的,而S能级是单层的,就可以得到第二辅线系的每一条谱线都是双线,且波数差是相等的情况。主线系的每条谱线中二成分的波数差随着波数的增加逐渐减少,足见不是同一个来源。主线系是诸P能级跃迁到最低S能级所产生的。我们同样认定S能级是单层的,而推广所有P能级是双层的,且这双层结构的间隔随主量子数n的增加而逐渐减小。这样的推论完全符合碱金属原子光谱双线的规律性。因此,肯定S项是单层结构,与实验结果相符合。碱金属能级的精细结构是由于碱金属原子中电子的轨道磁矩与自旋磁矩相互作用产生附加能量的结果。S
41、能级的轨道磁矩等于0,不产生附加能量,只有一个能量值,因而S能级是单层的。4.6 计算氢原子赖曼系第一条的精细结构分裂的波长差。解:赖曼系的第一条谱线是n=2的能级跃迁到n=1的能级产生的。根据选择定则,跃迁只能发生在22=1,可能产生四条光谱,分别由P12S之间。而S能级是单层的,所以,赖曼系的第一条谱线之精细结构是由P能级分裂产生的。氢原子能级的能量值由下式决定:-Rhc(Z-s)2Rhca2(Z-S)413E=-(-)4nn2n3j+2其中(Z-s)=(Z-S)=1QE(22P3/2)-E(12S1/2)=hl1=cl1hcE(22P3/2)-E(12S1/2)c2QE(22P1/2)-
42、E(1S1/2)=hl2l2=hc2E(22P1/2)-E(1S1/2)因此,有:Dl=l2-l1=hcE(22P3/2)-E(12S1/2)2E(22P3/2)-E(12S1/2)E(22P)-E(1S1/2)1/216+a2E(2P3/2)=-Rhc6416+5a22E(2P1/2)=-Rhc644+a22E(1S1/2)=-Rhc42 将以上三个能量值代入Dl的表达式,得:4a21Dl=48+11a248+15a2R6464644a2=22R(48+11a)(48+15a)=5.3910米=5.3910A4.7 Na原子光谱中得知其3D项的项值T3D结构裂距。解:已知T3D-13-3o=
43、1.2274106米-1,试计算该谱项之精细=1.2274106米-1,RNa=1.0974107米-1n*=Na=2.9901T3D 而Z*=n/n*Ra2Z*4所以有:DT=3=3.655米-1nl(l+1)4.8 原子在热平衡条件下处在各种不同能量激发态的原子的数目是按玻尔兹曼分布的,即能量为E的激发态原子数目N=N0g-(E-E0)/KTe。其中N0是能量为E0的状态的g0o原子数,g和g0是相应能量状态的统计权重,K是玻尔兹曼常数。从高温铯原子气体光谱中测出其共振光谱双线l1=8943.5A,l2=8521.1A的强度比I1:I2=2:3。试估算此气体=2,g2=4。o的温度。已知相
44、应能级的统计权重g1解:相应于l1,l2的能量分别为:E1=hc/l1;E2=hc/l2所测得的光谱线的强度正比于该谱线所对应的激发态能级上的粒子数N,即IN-E2I1N1g1-E1KT2=e= I2N2g23e-E1-E2KT=2g23g1由此求得T为:T=E2-E1=2773K 2Kln3g1 第五章 多电子原子5.1 He原子的两个电子处在2p3d电子组态。问可能组成哪几种原子态?用原子态的符号表示之。已知电子间是LS耦合。解:因为l11=1,l2=2,s1=s2=,2S=s1+s2或s1-s2;L=l1+l2,l1+l2-1,l1-l2, S=0,1;L=3,2,1所以可以有如下12个
45、组态:L=1,S=0,1P1L=1,S=1,3P0,1,2L=2,S=0,1D2L=2,S=1,D1,2,3L=3,S=0,1F3L=3,S=1,3F2,3,45.2 已知He原子的两个电子被分别激发到2p和3d轨道,器所构成的原子态为问这两电子的轨道角动量少?解:(1)已知原子态为333 D,pl1与pl2之间的夹角,自旋角动量ps1与ps2之间的夹角分别为多D,电子组态为2p3dL=2,S=1,l1=1,l2=2因此,h=h2ppl2=22h=hpl1=11PL=L(L+1)h=hPL=pl1+pl2+2pl1pl2cosqLcosqL=(PL2-pl12-pl22)/2pl1pl2=-1
46、2222 qL=106o46(2)Qs1=s2=12h 2p1=p2=s(s+1)h=PS=而PS2=ps12+ps22+2ps1ps2cosqs1cosqs=(PS2-ps12-ps22)/2ps1ps2=3qS=70o325.3 锌原子(Z=30)的最外层电子有两个,基态时的组态是4s4s。当其中有一个被激发,考虑两种情况:(1)那电子被激发到5s态;(2)它被激发到4p态。试求出LS耦合情况下这两种电子组态分别组成的原子状态。画出相应的能级图。从(1)和(2)情况形成的激发态向低能级跃迁分别发生几种光谱跃迁?解:(1)组态为4s5s时 l11=l2=0,s1=s2=,2L=0,S=0,1
47、1S=0时,J=L=0,单重态S0S=1时;J=1,三重态3S1根据洪特定则可画出相应的能级图,有选择定则能够判断出能级间可以发生的5种跃迁:3351S041P1,5S14P0;3353S143P;5S4P2 11141P14S0所以有5条光谱线。(2)外层两个电子组态为4s4p时:1l1=0,l2=1,s1=s2=,2L=1,S=0,1S=0时,J=L=1,单重态1P1 S=1时;J=2,1,0,三重态3P2,1,0根据洪特定则可以画出能级图,根据选择定则可以看出,只能产生一种跃迁,4P1因此只有一条光谱线。5.4 试以两个价电子l1目的可能状态.证明:(1)LS耦合141S0,=2和l2=
48、3为例说明,不论是LS耦合还是jj耦合都给出同样数S=0,1;L=5,4,3,2,1, S=0时;J=L5个 L值分别得出5个J值,即5个单重态S=1时;J=L+1,L,L-1;代入一个L值便有一个三重态个L值共有乘等于个原子态:3P0,1,2;3D1,2,3;3F2,3,4;3G3,4,5;3H4,5,6因此,LS耦合时共有个可能的状态()jj耦合:5375j=l+s或j=l-s;j1=或;j2=或2222J=j1+j2,j1+j2,.j1-j2将每个j1、j2合成J得:5j1=和j223j1=和j225j1=和j223j1=和j22共个状态:(7=,合成J27=,合成J25=,合成J25=
49、,合成J2=6,5,4,3,2,1=5,4,3,2 =5,4,3,2,1,0=4,3,2,157375535,)6,5,4,3,2,1,(,)5,4,3,2;(,)5,4,3,2,1,0;(,)4,3,2,1 22222222所以,对于相同的组态无论是LS耦合还是jj耦合,都会给出同样数目的可能状态5.5 利用LS耦合、泡利原理和洪特定责来确定碳Z=6、氮Z=7的原子基态。解:碳原子的两个价电子的组态2p2p,属于同科电子.这两个电子可能有的ml值是1,0,-1;可能有ms值是11,-,两个电子的主量子数和角量子数相同,根据泡利原理,它们22的其余两个量子数ml和ms至少要有一个不相同.它们的
50、ml和ms的可能配合如下表所示.为了决定合成的光谱项,最好从ML=mli的最高数值开始,因为这就等于L出现的=0ML得最高数值是2,最高数值。现在,因此可以得出一个D项。又因为这个ML只与MS相伴发生,因此这光谱项是项,它们都是MS是ML项选作1D项。除了ML=2以外,ML=+1,0,-1,-2也属于这一光谱=0。这些谱项在表中以ML的数字右上角的记号“。”表示。共有两项=1,MS=0;有三项是ML=0,MS=0。在寻找光谱项的过程中,把它们的哪一1D项的分项并不特别重要。类似地可以看出有九个组态属于3P项,在表中以ML的氮原子数字右上角的记号“*”表示。剩下一个组态ML因此,碳原子的光谱项是
51、因为在碳原子中31=0,MS=0,它们只能给出一个1S项。D、3P和1S,而没有其它的项。P项的S为最大,根据同科电子的洪特定则可知,碳原子的3P项应最低。碳原子两个价电子皆在p次壳层,p次壳层的满额电子数是6,因此碳原子的能级是正常次序,3P0是它的基态谱项。氮原子的三个价电子的组态是2p2p2p,亦属同科电子。它们之间满足泡利原理的可能配合如下表所示。表中删节号表示还有其它一些配合,相当于此表下半部给出的ms间以及ml间发生交换。由于电子的全同性,那些配合并不改变原子的状态,即不产生新的项。224由表容易判断,氮原子只有D、P和S。根据同科电子的洪特定则,断定氮原子的基态谱项应为4S3/2。5.6 已知氦原子的一个电子被激发到2p轨道,而另一个电子还在1s轨道。试作出能级跃迁图来说明可能出现哪些光谱线跃迁?解:l1对于S对于S=0,l2=1,s1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空货物运输合同范本
- 2025木材购销类合同模板
- 2025租赁合同与买卖合同的关联性分析
- 2025瓷砖买卖合同样本
- 华润电力测试题
- 网络犯罪侦查与数字取证考核试卷
- 2025租赁合同印花税新政策
- 2025携手创业协议范本合作合同
- 2025年度商业综合体广告牌制作与安装合同
- 2025试析网络购物中的消费者合同关系研究
- 卫生院、社区卫生服务中心关于开具死亡医学证明流程中死者死亡信息核实补充制度
- 2025年主管护师中级考试题库及答案参考
- 中职高教版(2023)语文职业模块-第七单元语文综合实践-走进传统节日-探寻文化根脉【课件】
- 【语文】《短文两篇:陋室铭》课件 2024-2025学年统编版语文七年级下册
- 舞蹈疗法在儿童精神疾病康复中的应用-洞察分析
- 2025年春新人教版语文一年级下册教学课件 18 棉花姑娘
- 工贸企业负责人安全培训
- 《陪诊从业人员能力培训标准》
- 《氢气输送管道工程设计规范》
- 管网工程施工重难点分析及对应措施
- 2024ESC心房颤动管理指南解读-完整版
评论
0/150
提交评论