版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1章 电力电子器件主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。1 电力电子器件概述(1) 电力电子器件的概念和特征主电路(main power circuit)-电气设备或电力系统中,直接承担电能的变换或控制任务的电路;电力电子器件(pow
2、er electronic device)-可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件;广义上电力电子器件可分为电真空器件和半导体器件两类。两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。电力半导体器件所采用的主要材料仍然是硅。同处理信息的电子器件相比,电力电子器件的一般特征:a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;其处理电功率
3、的能力小至毫瓦级,大至兆瓦级,大多都远大于处理信息的电子器件。b. 电力电子器件一般都工作在开关状态;导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定;电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。作电路分析时,为简单起见往往用理想开关来代替c. 实用中,电力电子器件往往需要由信息电子电路来控制。在主电路和控制电路之间,需要一定的中间电路对控制电路的信号进行放大,这就是电力电子器件的驱动电路。d. 为保证不致于因损耗散发的热
4、量导致器件温度过高而损坏,不仅在器件封装上讲究散热设计,在其工作时一般都要安装散热器。导通时器件上有一定的通态压降,形成通态损耗阻断时器件上有微小的断态漏电流流过,形成断态损耗在器件开通或关断的转换过程中产生开通损耗和关断损耗,总称开关损耗对某些器件来讲,驱动电路向其注入的功率也是造成器件发热的原因之一通常电力电子器件的断态漏电流极小,因而通态损耗是器件功率损耗的主要成因器件开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素(2) 应用电力电子器件的系统组成电力电子系统:由控制电路、驱动电路和以电力电子器件为核心的主电路组成。控制电路按系统的工作要求形成控制信号,通过驱动电路去
5、控制主电路中电力电子器件的通或断,来完成整个系统的功能。有的电力电子系统中,还需要有检测电路。广义上往往其和驱动电路等主电路之外的电路都归为控制电路,从而粗略地说电力电子系统是由主电路和控制电路组成的。主电路中的电压和电流一般都较大,而控制电路的元器件只能承受较小的电压和电流,因此在主电路和控制电路连接的路径上,如驱动电路与主电路的连接处,或者驱动电路与控制信号的连接处,以及主电路与检测电路的连接处,一般需要进行电气隔离,而通过其它手段如光、磁等来传递信号。由于主电路中往往有电压和电流的过冲,而电力电子器件一般比主电路中普通的元器件要昂贵,但承受过电压和过电流的能力却要差一些,因此,在主电路和
6、控制电路中附加一些保护电路,以保证电力电子器件和整个电力电子系统正常可靠运行,也往往是非常必要的。器件一般有三个端子(或称极),其中两个联结在主电路中,而第三端被称为控制端(或控制极)。器件通断是通过在其控制端和一个主电路端子之间加一定的信号来控制的,这个主电路端子是驱动电路和主电路的公共端,一般是主电路电流流出器件的端子。(3) 电力电子器件的分类按照器件能够被控制电路信号所控制的程度,分为以下三类:a. 半控型器件-通过控制信号可以控制其导通而不能控制其关断晶闸管(Thyristor)及其大部分派生器件器件的关断由其在主电路中承受的电压和电流决定b. 全控型器件-通过控制信号既可控制其导通
7、又可控制其关断,又称自关断器件是绝缘栅双极晶体管(Insulated-Gate Bipolar Transistor-IGBT)电力场效应晶体管(Power MOSFET,简称为电力MOSFET)门极可关断晶闸管(Gate-Turn-Off Thyristor-GTO)c. 不可控器件-不能用控制信号来控制其通断,因此也就不需要驱动电路电力二极管(Power Diode)只有两个端子,器件的通和断是由其在主电路中承受的电压和电流决定的按照驱动电路加在器件控制端和公共端之间信号的性质,分为两类:电流驱动型-通过从控制端注入或者抽出电流来实现导通或者关断的控制电压驱动型-仅通过在控制端和公共端之间
8、施加一定的电压信号就可实现导通或者关断的控制电压驱动型器件实际上是通过加在控制端上的电压在器件的两个主电路端子之间产生可控的电场来改变流过器件的电流大小和通断状态,所以又称为场控器件,或场效应器件按照器件内部电子和空穴两种载流子参与导电的情况分为三类:单极型器件-由一种载流子参与导电的器件双极型器件-由电子和空穴两种载流子参与导电的器件复合型器件-由单极型器件和双极型器件集成混合而成的器件2 不可控器件-电力二极管 Power Diode结构和原理简单,工作可靠,自20世纪50年代初期就获得应用 快恢复二极管和肖特基二极管,分别在中、高频整流和逆变,以及低压高频整流的场合,具有不可替代的地位(
9、1) PN结与电力二极管的工作原理 基本结构和工作原理与信息电子电路中的二极管一样 以半导体PN结为基础 由一个面积较大的PN结和两端引线以及封装组成的 从外形上看,主要有螺栓型和平板型两种封装图1-1 电力二极管的外形、结构和电气图形符号a) 外形 b) 结构 c) 电气图形符号PN结的反向截止状态,PN结的单向导电性;PN结的反向击穿:有雪崩击穿和齐纳击穿两种形式,可能导致热击穿。PN结的电容效应:PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ,又称为微分电容。结电容按其产生机制和作用的差别分为势垒电容CB和扩散电容CD势垒电容只在外加电压变化时才起作用,外加电压频率越高,势
10、垒电容作用越明显。势垒电容的大小与PN结截面积成正比,与阻挡层厚度成反比而扩散电容仅在正向偏置时起作用。在正向偏置时,当正向电压较低时,势垒电容为主正向电压较高时,扩散电容为结电容主要成分结电容影响PN结的工作频率,特别是在高速开关的状态下,可能使其单向导电性变差,甚至不能工作,应用时应加以注意。造成电力二极管和信息电子电路中的普通二极管区别的一些因素: 正向导通时要流过很大的电流,其电流密度较大,因而额外载流子的注入水平较高,电导调制效应不能忽略 引线和焊接电阻的压降等都有明显的影响 承受的电流变化率di/dt较大,因而其引线和器件自身的电感效应也会有较大影响 为了提高反向耐压,其掺杂浓度低
11、也造成正向压降较大(2) 电力二极管的基本特性a 静态特性主要指其伏安特性当电力二极管承受的正向电压大到一定值(门槛电压UTO),正向电流才开始明显增加,处于稳定导通状态。与正向电流IF对应的电力二极管两端的电压UF即为其正向电压降。当电力二极管承受反向电压时,只有少子引起的微小而数值恒定的反向漏电流。b 动态特性动态特性-因结电容的存在,三种状态之间的转换必然有一个过渡过程,此过程中的电压-电流特性是随时间变化的开关特性-反映通态和断态之间的转换过程关断过程: 须经过一段短暂的时间才能重新获得反向阻断能力,进入截止状态 在关断之前有较大的反向电流出现,并伴随有明显的反向电压过冲图1-2 反向
12、恢复过程中电流和电压波形(3) 电力二极管的主要参数a. 正向平均电流IF(AV)额定电流-在指定的管壳温度(简称壳温,用TC表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值 正向平均电流是按照电流的发热效应来定义的,因此使用时应按有效值相等的原则来选取电流定额,并应留有一定的裕量。 当用在频率较高的场合时,开关损耗造成的发热往往不能忽略 当采用反向漏电流较大的电力二极管时,其断态损耗造成的发热效应也不小b. 正向压降UF 指电力二极管在指定温度下,流过某一指定的稳态正向电流时对应的正向压降 有时参数表中也给出在指定温度下流过某一瞬态正向大电流时器件的最大瞬时正向压降c. 反向重复
13、峰值电压URRM 指对电力二极管所能重复施加的反向最高峰值电压 通常是其雪崩击穿电压UB的2/3 使用时,往往按照电路中电力二极管可能承受的反向最高峰值电压的两倍来选定d. 最高工作结温TJM 结温是指管芯PN结的平均温度,用TJ表示 最高工作结温是指在PN结不致损坏的前提下所能承受的最高平均温度 TJM通常在125175C范围之内e. 反向恢复时间trrtrr= td+ tf ,关断过程中,电流降到0起到恢复反响阻断能力止的时间f. 浪涌电流IFSM指电力二极管所能承受最大的连续一个或几个工频周期的过电流。(4) 电力二极管的主要类型 按照正向压降、反向耐压、反向漏电流等性能,特别是反向恢复
14、特性的不同介绍 在应用时,应根据不同场合的不同要求,选择不同类型的电力二极管 性能上的不同是由半导体物理结构和工艺上的差别造成的a. 普通二极管(General Purpose Diode) 又称整流二极管(Rectifier Diode) 多用于开关频率不高(1kHz以下)的整流电路中 其反向恢复时间较长,一般在5s以上,这在开关频率不高时并不重要 正向电流定额和反向电压定额可以达到很高,分别可达数千安和数千伏以上b. 快恢复二极管(Fast Recovery Diode-FRD) 恢复过程很短特别是反向恢复过程很短(5s以下)的二极管,也简称快速二极管 工艺上多采用了掺金措施 有的采用PN
15、结型结构 有的采用改进的PiN结构 采用外延型PiN结构的的快恢复外延二极管(Fast Recovery Epitaxial Diodes-FRED),其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右),但其反向耐压多在400V以下 从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到2030ns。图1-3 快速整流二极管的正向恢复特性a) 管压降随时间变化的曲线 b) 二极管开通电流波形c. 肖特基二极管以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒二极管(Schottky Barrier Diode-SB
16、D),简称为肖特基二极管20世纪80年代以来,由于工艺的发展得以在电力电子电路中广泛应用肖特基二极管的优点: 反向恢复时间很短(1040ns); 正向恢复过程中也不会有明显的电压过冲; 在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管; 其开关损耗和正向导通损耗都比快速二极管还要小,效率高。肖特基二极管的弱点: 当反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下; 反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。3 半控型器件-晶闸管基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件
17、的选取原则。重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则。难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。晶闸管(Thyristor):晶体闸流管,可控硅整流器(Silicon Controlled Rectifier-SCR) 1956年美国贝尔实验室(Bell Laboratories)发明了晶闸管 1957年美国通用电气公司(General Electric Company)开发出第一只晶闸管产品 1958年商业化 开辟了电力电子技术迅速发展和广泛应用的崭新时代 20世纪80年代以来,开始被性能更好的全控型器件取代 能承受的电压和电流容量最高,工
18、作可靠,在大容量的场合具有重要地位晶闸管往往专指晶闸管的一种基本类型-普通晶闸管广义上讲,晶闸管还包括其许多类型的派生器件(1) 晶闸管的结构与工作原理图1-4 晶闸管的外形、内部结构、电气图形符号和模块外形a) 晶闸管外形 b) 内部结构 c) 电气图形符号 d) 模块外形 外形有螺栓型和平板型两种封装 引出阳极A、阴极K和门极(控制端)G三个联接端 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便 平板型封装的晶闸管可由两个散热器将其夹在中间Ic1=1 IA + ICBO1 (1-1)Ic2=2 IK + ICBO2 (1-2)IK=IA+IG (1-3)IA=IC1+IC2
19、 (1-4)图1-5 晶闸管工作条件的实验电路图1-6 晶闸管的双晶体管模型式中1和2分别是晶体管V1和V2的共基极电流增益;ICBO1和ICBO2分别是V1和V2的共基极漏电流。晶体管的特性是:在低发射极电流下是很小的,而当发射极电流建立起来之后,迅速增大。阻断状态:IG=0,1+2很小。流过晶闸管的漏电流稍大于两个晶体管漏电流之和开通(门极触发):注入触发电流使晶体管的发射极电流增大以致1+2趋近于1的话,流过晶闸管的电流IA(阳极电流)将趋近于无穷大,实现饱和导通。IA实际由外电路决定。其他几种可能导通的情况: 阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较
20、高 光直接照射硅片,即光触发光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电力设备中之外,其它都因不易控制而难以应用于实践,称为光控晶闸管(Light Triggered Thyristor-LTT)只有门极触发(包括光触发)是最精确、迅速而可靠的控制手段(2 )晶闸管的基本特性a. 静态特性: 承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通; 承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通; 晶闸管一旦导通,门极就失去控制作用; 要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。晶闸管的伏安特性:第I象限的是正向特性;第III象限的是反向特性; IG
21、=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通; 随着门极电流幅值的增大,正向转折电压降低; 导通后的晶闸管特性和二极管的正向特性相仿; 晶闸管本身的压降很小,在1V左右; 导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态。IH称为维持电流。 晶闸管上施加反向电压时,伏安特性类似二极管的反向特性。图1-7 晶闸管的伏安特性IG2 IG1 IG 晶闸管的门极触发电流从门极流入晶闸管,从阴极流出, 阴极是晶闸管主电路与控制电路的公共端,。 门极触发电流也往往
22、是通过触发电路在门极和阴极之间施加触发电压而产生的。 晶闸管的门极和阴极之间是PN结J3,其伏安特性称为门极伏安特性。为保证可靠、安全的触发,触发电路所提供的触发电压、电流和功率应限制在可靠触发区。b. 动态特性图1-8 晶闸管的动态过程及相应的损耗1) 开通过程延迟时间td:门极电流阶跃时刻开始,到阳极电流上升到稳态值的10%的时间;上升时间tr:阳极电流从10%上升到稳态值的90%所需的时间;开通时间tgt:以上两者之和,tgt= td + tr (1-6)普通晶闸管延迟时间为0.5-1.5s,上升时间为0.5-3s。2) 关断过程反向阻断恢复时间trr:正向电流降为零到反向恢复电流衰减至
23、接近于零的时间;正向阻断恢复时间tgr:晶闸管要恢复其对正向电压的阻断能力还需要一段时间; 在正向阻断恢复时间内如果重新对晶闸管施加正向电压,晶闸管会重新正向导通; 实际应用中,应对晶闸管施加足够长时间的反向电压,使晶闸管充分恢复其对正向电压的阻断能力,电路才能可靠工作。关断时间tq:trr与tgr之和,即 tq=trr+tgr (1-7)普通晶闸管的关断时间约几百微秒。(3) 晶闸管的主要参数a. 电压定额1) 断态重复峰值电压UDRM在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。2) 反向重复峰值电压URRM在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。3)
24、 通态(峰值)电压UTM晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。通常取晶闸管的UDRM和URRM中较小的标值作为该器件的额定电压。选用时,额定电压要留有一定裕量,一般取额定电压为正常工作时晶闸管所承受峰值电压的23倍,b. 电流定额1) 通态平均电流IT(AV) (额定电流)晶闸管在环境温度为40(C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。 使用时应按实际电流与通态平均电流有效值相等的原则来选取晶闸管 应留一定的裕量,一般取1.5-2倍正弦半波电流平均值IT (AV)、电流有效值IT 和电流最大值Im三者的关系为: (1.1) (
25、1.2)各种有直流分量的电流波形,其电流波形的有效值I与平均值Id之比,称为这个电流的波形系数,用K f 表示。因此,在正弦半波情况下电流波形系数为: (1.3)所以,晶闸管在流过任意波形电流并考虑了安全裕量情况下的额定电流IT(AV) 的计算公式为: (1.4)在使用中还应注意,当晶闸管散热条件不满足规定要求时,则元件的额定电流应立即降低使用,否则元件会由于结温超过允许值而损坏。2) 维持电流IH使晶闸管维持导通所必需的最小电流 一般为几十到几百毫安,与结温有关,结温越高,则IH越小3) 擎住电流IL晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流 对同一晶闸管来说,通常IL
26、约为IH的24倍4) 浪涌电流ITSM指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流c. 动态参数除开通时间tgt和关断时间tq外,还有:a.) 断态电压临界上升率du/dt指在额定结温和门极开路的情况下,不导致晶闸管从断态到通态转换的外加电压最大上升率 在阻断的晶闸管两端施加的电压具有正向的上升率时,相当于一个电容的J2结会有充电电流流过,被称为位移电流。此电流流经J3结时,起到类似门极触发电流的作用。如果电压上升率过大,使充电电流足够大,就会使晶闸管误导通b.) 通态电流临界上升率di/dt指在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率 如果电流上升太
27、快,则晶闸管刚一开通,便会有很大的电流集中在门极附近的小区域内,从而造成局部过热而使晶闸管损坏(4) 晶闸管的派生器件a. 快速晶闸管(Fast Switching Thyristor-FST) 包括所有专为快速应用而设计的晶闸管,有快速晶闸管和高频晶闸管 管芯结构和制造工艺进行了改进,开关时间以及du/dt和di/dt耐量都有明显改善 普通晶闸管关断时间数百微秒,快速晶闸管数十微秒,高频晶闸管10s左右 高频晶闸管的不足在于其电压和电流定额都不易做高 由于工作频率较高,选择通态平均电流时不能忽略其开关损耗的发热效应b. 双向晶闸管(Triode AC Switch-TRIAC或Bidirec
28、tional triode thyristor)图1-9 双向晶闸管的电气图形符号和伏安特性a)电气图形符号 b) 伏安特性 可认为是一对反并联联接的普通晶闸管的集成 有两个主电极T1和T2,一个门极G 正反两方向均可触发导通,所以双向晶闸管在第和第III象限有对称的伏安特性 与一对反并联晶闸管相比是经济的,且控制电路简单,在交流调压电路、固态继电器(Solid State Relay-SSR)和交流电机调速等领域应用较多 通常用在交流电路中,因此不用平均值而用有效值来表示其额定电流值。c. 逆导晶闸管(Reverse Conducting Thyristor-RCT) 将晶闸管反并联一个二极
29、管制作在同一管芯上的功率集成器件 具有正向压降小、关断时间短、高温特性好、额定结温高等优点 逆导晶闸管的额定电流有两个,一个是晶闸管电流,一个是反并联二极管的电流图1-10 逆导晶闸管的电气图形符号和伏安特性a) 电气图形符号 b) 伏安特性图1-11 光控晶闸管的电气图形符号和伏安特性a) 电气图形符号 b) 伏安特性d. 光控晶闸管(Light Triggered Thyristor-LTT) 又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管 小功率光控晶闸管只有阳极和阴极两个端子 大功率光控晶闸管则还带有光缆,光缆上装有作为触发光源的发光二极管或半导体激光器 光触发保证了主电路
30、与控制电路之间的绝缘,且可避免电磁干扰的影响,因此目前在高压大功率的场合,如高压直流输电和高压核聚变装置中,占据重要的地位。4 典型全控型器件基本要求:掌握典型全控型器件重点:典型全控型器件 门极可关断晶闸管在晶闸管问世后不久出现。 20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入了一个崭新时代典型代表门极可关断晶闸管、电力晶体管、电力场效应晶体管、绝缘栅双极晶体管(1) 门极可关断晶闸管 门极可关断晶闸管(Gate-Turn-Off ThyristorGTO) 晶闸管的一种派生器件 可以通过在
31、门极施加负的脉冲电流使其关断 GTO的电压、电流容量较大,与普通晶闸管接近,因而在兆瓦级以上的大功率场合仍有较多的应用(2) 电力晶体管电力晶体管(Giant TransistorGTR,直译为巨型晶体管)耐高电压、大电流的双极结型晶体管(Bipolar Junction TransistorBJT),英文有时候也称为Power BJT,在电力电子技术的范围内,GTR与BJT这两个名称等效。 应用:20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代;a. GTR的结构和工作原理与普通的双极结型晶体管基本原理是一样的主要特性是耐压高、电流大、开关特性
32、好通常采用至少由两个晶体管按达林顿接法组成的单元结构采用集成电路工艺将许多这种单元并联而成一般采用共发射极接法,集电极电流ic与基极电流ib之比为 (1-9)( GTR的电流放大系数,反映了基极电流对集电极电流的控制能力)当考虑到集电极和发射极间的漏电流Iceo时,ic和ib的关系为 ic=ib +Iceo (1-10)产品说明书中通常给直流电流增益hFE在直流工作情况下集电极电流与基极电流之比。一般可认为hFE单管GTR的值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有效增大电流增益b. GTR的基本特性图1.12 共发射极接法时GTR的静态特性(1) 静态特性 共发射极接法时的
33、典型输出特性:截止区、放大区和饱和区 在电力电子电路中GTR工作在开关状态,即工作在截止区或饱和区 在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区(2) 动态特性开通过程图1.13 GTR的开通和关断过程电流波形延迟时间td和上升时间tr,二者之和为开通时间tontd主要是由发射结势垒电容和集电结势垒电容充电产生的。增大ib的幅值并增大dib/dt,可缩短延迟时间,同时可缩短上升时间,从而加快开通过程 关断过程储存时间ts和下降时间tf,二者之和为关断时间toffts是用来除去饱和导通时储存在基区的载流子的,是关断时间的主要部分减小导通时的饱和深度以减小储存的载流子,或者增大基极抽取
34、负电流Ib2的幅值和负偏压,可缩短储存时间,从而加快关断速度负面作用是会使集电极和发射极间的饱和导通压降Uces增加,从而增大通态损耗 GTR的开关时间在几微秒以内,比晶闸管和GTO都短很多c. GTR的主要参数前已述及:电流放大倍数(、直流电流增益hFE、集射极间漏电流Iceo、集射极间饱和压降Uces、开通时间ton和关断时间toff此外还有:1) 最高工作电压 GTR上电压超过规定值时会发生击穿击穿电压不仅和晶体管本身特性有关,还与外电路接法有关BUcbo BUcex BUces BUcer BUceo实际使用时,为确保安全,最高工作电压要比BUceo低得多2) 集电极最大允许电流IcM
35、通常规定为hFE下降到规定值的1/21/3时所对应的Ic实际使用时要留有裕量,只能用到IcM的一半或稍多一点3) 集电极最大耗散功率PcM最高工作温度下允许的耗散功率产品说明书中给PcM时同时给出壳温TC,间接表示了最高工作温度d. GTR的二次击穿现象与安全工作区 一次击穿: 集电极电压升高至击穿电压时,Ic迅速增大,出现雪崩击穿; 只要Ic不超过限度,GTR一般不会损坏,工作特性也不变。 二次击穿: 一次击穿发生时Ic增大到某个临界点时会突然急剧上升,并伴随电压的陡然下降, 常常立即导致器件的永久损坏,或者工作特性明显衰变。 安全工作区(Safe Operating AreaSOA)最高电
36、压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。图1-14 GTR的安全工作区(3) 电力场效应晶体管 也分为结型和绝缘栅型(类似小功率Field Effect TransistorFET) 但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET) 简称电力MOSFET(Power MOSFET) 结型电力场效应晶体管一般称作静电感应晶体管(Static Induction TransistorSIT) 特点用栅极电压来控制漏极电流 驱动电路简单,需要的驱动功率小 开关速度快,工作频率高 热稳定性优于GTR 电流容量小,耐压低,一
37、般只适用于功率不超过10kW的电力电子装置a. 电力MOSFET的结构和工作原理 电力MOSFET的种类 按导电沟道可分为P沟道和N沟道 耗尽型当栅极电压为零时漏源极之间就存在导电沟道增强型对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道 电力MOSFET主要是N沟道增强型 电力MOSFET的结构 导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管 导电机理与小功率MOS管相同,但结构上有较大区别 小功率MOS管是横向导电器件 电力MOSFET大都采用垂直导电结构,又称为VMOSFET(Vertical MOSFET)大大提高了MOSFET器件的耐压和耐电流能力 按垂直导电
38、结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET) 这里主要以VDMOS器件为例进行讨论 电力MOSFET的多元集成结构 国际整流器公司(International Rectifier)的HEXFET采用了六边形单元 西门子公司(Siemens)的SIPMOSFET采用了正方形单元图1-15 电力MOSFET的结构和电气图形符号a) 内部结构断面示意图 b) 电气图形符号 摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列 电力MOSFET的工作原理截
39、止:漏源极间加正电源,栅源极间电压为零P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过 导电:在栅源极间加正电压UGS 栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子电子吸引到栅极下面的P区表面 当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电图1-16 电力MOSFET的转移特性和输出特性a)转移特性 b) 输出特性b. 电力MOSFET的基本特性1) 静态特性 漏极电流ID和栅源间电压UGS的关系称为MOS
40、FET的转移特性ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs MOSFET的漏极伏安特性(输出特性): 截止区(对应于GTR的截止区) 饱和区(对应于GTR的放大区) 非饱和区(对应于GTR的饱和区)图1-17 电力MOSFET的动态特性波形电力MOSFET工作在开关状态,即在截止区和非饱和区之间来回转换电力MOSFET漏源极之间有寄生二极管,漏源极间加反向电压时器件导通 电力MOSFET的通态电阻具有正温度系数,对器件并联时的均流有利2) 动态特性up脉冲信号源,Rs信号源内阻,RG栅极电阻,RL负载电阻,RF检测漏极电流 开通过程 开通延迟时间td(on) up前沿时
41、刻到uGS=UT并开始出现iD的时刻间的时间段 上升时间tr uGS从uT上升到MOSFET进入非饱和区的栅压UGSP的时间段iD稳态值由漏极电源电压UE和漏极负载电阻决定UGSP的大小和iD的稳态值有关UGS达到UGSP后,在up作用下继续升高直至达到稳态,但iD已不变 开通时间ton开通延迟时间与上升时间之和 开通过程 关断延迟时间td(off) up下降到零起,Cin通过Rs和RG放电,uGS按指数曲线下降到UGSP时,iD开始减小止的时间段 下降时间tf uGS从UGSP继续下降起,iD减小,到uGS20V将导致绝缘层击穿4) 极间电容 极间电容CGS、CGD和CDS 厂家提供:漏源极
42、短路时的输入电容Ciss、共源极输出电容Coss和反向转移电容CrssCiss= CGS+ CGD (1-14)Crss= CGD (1-15)Coss= CDS+ CGD (1-16) 输入电容可近似用Ciss代替 这些电容都是非线性的 漏源间的耐压、漏极最大允许电流和最大耗散功率决定了电力MOSFET的安全工作区 一般来说,电力MOSFET不存在二次击穿问题,这是它的一大优点 实际使用中仍应注意留适当的裕量(4) 绝缘栅双极晶体管 GTR和GTO的特点双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂 MOSFET的优点单极型,电压驱动,开关速度快,
43、输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单 两类器件取长补短结合而成的复合器件Bi-MOS器件 绝缘栅双极晶体管(Insulated-gate Bipolar TransistorIGBT或IGT) GTR和MOSFET复合,结合二者的优点,具有良好的特性 1986年投入市场后,取代了GTR和一部分MOSFET的市场,中小功率电力电子设备的主导器件 继续提高电压和电流容量,以期再取代GTO的地位a. IGBT的结构和工作原理三端器件:栅极G、集电极C和发射极E图1-18 IGBT的结构、简化等效电路和电气图形符号a) 内部结构断面示意图 b) 简化等效电路 c) 电气图形符号IGB
44、T的结构 图1-19aN沟道VDMOSFET与GTR组合N沟道IGBT(N-IGBT) IGBT比VDMOSFET多一层P+注入区,形成了一个大面积的P+N结J1使IGBT导通时由P+注入区向N基区发射少子,从而对漂移区电导率进行调制,使得IGBT具有很强的通流能力 简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,一个由MOSFET驱动的厚基区PNP晶体管 RN为晶体管基区内的调制电阻 IGBT的原理 驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定 导通:uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通
45、导通压降:电导调制效应使电阻RN减小,使通态压降小 关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断b. IGBT的基本特性1) IGBT的静态特性图1-19 IGBT 的转移特性和输出特性a)转移特性 b) 输出特性 转移特性IC与UGE间的关系,与MOSFET转移特性类似开启电压UGE(th)IGBT能实现电导调制而导通的最低栅射电压UGE(th)随温度升高而略有下降,在+25(C时,UGE(th)的值一般为26V 输出特性(伏安特性)以UGE为参考变量时,IC与UCE间的关系图1-20 IGBT的动态特性分为三个区域:正向阻断区、有源区和
46、饱和区。分别与GTR的截止区、放大区和饱和区相对应uCE0时,IGBT为反向阻断工作状态2) IGBT的动态特性IGBT的开通过程 与MOSFET的相似,因为开通过程中IGBT在大部分时间作为MOSFET运行 开通延迟时间td(on) 从uGE上升至其幅值10%的时刻,到iC上升至10% ICM 电流上升时间tr iC从10%ICM上升至90%ICM所需时间 开通时间ton开通延迟时间与电流上升时间之和 uCE的下降过程分为tfv1和tfv2两段。tfv1IGBT中MOSFET单独工作的电压下降过程;tfv2MOSFET和PNP晶体管同时工作的电压下降过程 IGBT的关断过程 关断延迟时间td
47、(off) 从uGE后沿下降到其幅值90%的时刻起,到iC下降至90%ICM 电流下降时间iC从90%ICM下降至10%ICM 关断时间toff关断延迟时间与电流下降时间之和 电流下降时间又可分为tfi1和tfi2两段。tfi1IGBT内部的MOSFET的关断过程,iC下降较快;tfi2IGBT内部的PNP晶体管的关断过程,iC下降较慢 IGBT中双极型PNP晶体管的存在,虽然带来了电导调制效应的好处,但也引入了少子储存现象,因而IGBT的开关速度低于电力MOSFET IGBT的击穿电压、通态压降和关断时间也是需要折衷的参数c. IGBT的主要参数1) 最大集射极间电压UCES 由内部PNP晶
48、体管的击穿电压确定2) 最大集电极电流 包括额定直流电流IC和1ms脉宽最大电流ICP3) 最大集电极功耗PCM 正常工作温度下允许的最大功耗IGBT的特性和参数特点(1) 开关速度高,开关损耗小。在电压1000V以上时,开关损耗只有GTR的1/10,与电力MOSFET相当(2) 相同电压和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力(3) 通态压降比VDMOSFET低,特别是在电流较大的区域(4) 输入阻抗高,输入特性与MOSFET类似(5) 与MOSFET和GTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点图1-22 具有寄生晶闸管的IGBT等效电路d. I
49、GBT的擎住效应和安全工作区图1-23 IGBT安全工作区a) FBSOA b) RBSOA寄生晶闸管由一个N-PN+晶体管和作为主开关器件的P+N-P晶体管组成 擎住效应或自锁效应:NPN晶体管基极与发射极之间存在体区短路电阻,P形体区的横向空穴电流会在该电阻上产生压降,相当于对J3结施加正偏压,一旦J3开通,栅极就会失去对集电极电流的控制作用,电流失控 动态擎住效应比静态擎住效应所允许的集电极电流小 正偏安全工作区(FBSOA)最大集电极电流、最大集射极间电压和最大集电极功耗确定 反向偏置安全工作区(RBSOA)最大集电极电流、最大集射极间电压和最大允许电压上升率duCE/dt确定擎住效应
50、曾限制IGBT电流容量提高,20世纪90年代中后期开始逐渐解决IGBT往往与反并联的快速二极管封装在一起,制成模块,成为逆导器件5 其他新型电力电子器件(1) MOS控制晶闸管MCTMCT(MOS Controlled Thyristor)MOSFET与晶闸管的复合MCT结合了二者的优点:MOSFET的高输入阻抗、低驱动功率、快速的开关过程晶闸管的高电压大电流、低导通压降一个MCT器件由数以万计的MCT元组成,每个元的组成为:一个PNPN晶闸管,一个控制该晶闸管开通的MOSFET,和一个控制该晶闸管关断的MOSFETMCT曾一度被认为是一种最有发展前途的电力电子器件。因此,20世纪80年代以来
51、一度成为研究的热点。但经过十多年的努力,其关键技术问题没有大的突破,电压和电流容量都远未达到预期的数值,未能投入实际应用(2) 静电感应晶体管SITSIT(Static Induction Transistor)1970年,结型场效应晶体管小功率SIT器件的横向导电结构改为垂直导电结构,即可制成大功率的SIT器件多子导电的器件,工作频率与电力MOSFET相当,甚至更高,功率容量更大,因而适用于高频大功率场合在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用缺点:栅极不加信号时导通,加负偏压时关断,称为正常导通型器件,使用不太方便通态电阻较大,通态损耗也大,因而还未在大多数
52、电力电子设备中得到广泛应用(3) 静电感应晶闸管SITHSITH(Static Induction Thyristor)1972年,在SIT的漏极层上附加一层与漏极层导电类型不同的发射极层而得到,因其工作原理与SIT类似,门极和阳极电压均能通过电场控制阳极电流,因此SITH又被称为场控晶闸管(Field Controlled ThyristorFCT)比SIT多了一个具有少子注入功能的PN结, SITH是两种载流子导电的双极型器件,具有电导调制效应,通态压降低、通流能力强。其很多特性与GTO类似,但开关速度比GTO高得多,是大容量的快速器件 SITH一般也是正常导通型,但也有正常关断型。此外,
53、其制造工艺比GTO复杂得多,电流关断增益较小,因而其应用范围还有待拓展(4) 集成门极换流晶闸管IGCTIGCT(Integrated Gate-Commutated Thyristor),也称GCT(Gate-Commutated Thyristor),20世纪90年代后期出现,结合了IGBT与GTO的优点,容量与GTO相当,开关速度快10倍,且可省去GTO庞大而复杂的缓冲电路,只不过所需的驱动功率仍很大目前正在与IGBT等新型器件激烈竞争,试图最终取代GTO在大功率场合的位置(5) 功率模块与功率集成电路20世纪80年代中后期开始,模块化趋势,将多个器件封装在一个模块中,称为功率模块可缩小装置体积,降低成本,提高可靠性对工作频率高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计师事务所兼职合同范本:工作职责与权益保障
- 2024解除劳动合同的问题
- 国家级代理授权经营合同范本
- 2024新版广告合同格式
- 医院与社区合作协议
- 2024年度别墅电梯定制安装合同
- 2024建筑材料的购销合同范本
- 2024年专用电缆采购合同
- 2024苗圃土地承包合同模板
- 工程项目协作股权协议范例
- 2015-2024北京中考真题语文汇编:记叙文阅读
- 2024年湖南土建中级职称-建筑工程《法律法规及技术标准》考试题库(含答案)
- 旅游景区消防安全培训
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 2024-2025学年 浙教版七年级数学上册期中(第1-4章)培优试卷
- 个人简历模板(5套完整版)
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 文艺复兴经典名著选读智慧树知到期末考试答案章节答案2024年北京大学
- 劳务派遣劳务外包服务方案(技术方案)
- 给4S店精品销售的几点建议
- 非营利组织机构营销个案分析——以广州青年志愿者协会为例
评论
0/150
提交评论