版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、绪论数列是中学数学的一项重要内容,在中学数学体系中相对独立,但有一定 的综合性和灵活性高中数学中的数列知识主要涉及等差、等比数列的通项公式 以及数列求和等内容,能力要求较高.数列的通项公式是高中数学中最为常见的 题型之一,它既可考查转化与化归的数学思想,又能反映中学生对等差与等比数 列理解的深度,具有一定的技巧性,因此经常渗透在数学竞赛和高考中.同时也是 初等数学与高等数学的一个重要衔接点。一扇门,打开它的关键就是门上的锁和钥匙, 而数列问题就像紧闭的门,数 列的通项公式与它的推导思路就是开门的关键。 数列可以看作是特殊的函数,特 殊在可以看作定义域为正整数集的函数当自变量依次取值时对应的一系
2、列的函 数值,而数列的通项公式即这个函数的关系式。所以,推导数列的通项公式关键 是找出an与n的关系。在本文中讨论的方法也是函数中常用的技巧在各类研究数列通项公式的资料中,推导数列通项公式的常用方法一般有: 公式法,待定系数法,不动点法,累加法,累乘法,归纳猜想法,构造等差或等 比数列法等.本文从实际出发,首先介绍在数列知识体系中的一些相关概念及公 式,然后把上述方法比较系统的归纳为四大类:公式法、归纳猜想法、迭代法、 构造新数列法解题思路由简单到复杂,难度一步步上升不仅如此,内容安排上 把方法和应用相结合,让读者更好的理解和掌握。在应用举例中,有些一种类型的题可以用不同的方法解决,这种形式有
3、利于 开发中学生的发散思维能力,让学生在解决数列问题时从多方面综合考虑, 以找 出最简便的解法。怎样找准方法快速有效地推导呢?这就是本文所讨论的问题。1数列的相关概念.1.1数列数列:按某种规定排列的一列数aa2,,a.,称为数列。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第 1项(通常也叫做首 项),排在第n位的数称为这个数列的第n项,也叫数列的通项an.数列的通项公式:将数列a.的第n项用一个具体式子(含有参数 n) 表示出来,称作该数列的通项公式。通项an可以看作是项数n的函数a.二f(n).当然,不是所有的数列都能写 出它的通项公式,女口: 一个学校的学生的考试成
4、绩由高到矮组成的数列, 就很难 写出其通项公式.1.2基本数列的通项公式高中学习的数列有两种最基本的数列:等差数列与等比数列等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等 于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差通常用字母d表示.如果等差数列的首项为ai ,公差为d,那么这个数列可以写成a1, a1 d ,a1 2d, (n -1)d,的形式,所以等差数列的通项公式为an =印(n _ 1)d等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,通常用q来表示。如果等比数列的
5、首项为ai,公比为q,那么这个数列可以写成2.n.ai , aiq, aiq , aiq ,的形式,所以,等比数列的通项公式是nan pq递推数列:根据等差数列的概念,形成等差数列的条件可以看作任一项与前 一项的差为常数,即ani二d,像这样表示若干个相邻项之间的关系式叫做数列的递推式 一个数列的第 n项an与前面的k项an,an亠,a.的关系 an = f (an 4,anj2,an )称为k阶递推关系,由k阶关系及给定的前k项 ai,a2,,ak的值所确定的数列叫做k阶递推数列.在高中数学中,很多关于数列的题的题干都是以递推式的形式给出,如2a 亠ian ian an i =an、an d
6、 n -、anpan q等.这样就加大了推导数列通项3公式的难度。2数列通项公式的几种推导方法2.i公式法类型一 若题型中已知数列 an为等差或等比数列,则可直接利用公式求类型二 若已知数列的前n项和Sn与n的关系式Sn = f (n),则利用公式Sn八n = 1a* =& -n 兰2求出数列的通项.这两类型是数列问题中最直接,最简单的解法。2.2归纳猜想法在数列的有关题型中,有些明确给出了一个数列的前几项,如1 , 8,27,64,125,要求求出这个数列的通项。这类题一般以选择题或填空题的形 式出现。解决此类型的题,快速准确是关键,所以,用猜想归纳的思想能有效的 解决问题。首先,运用观察法
7、,从数列的前几项中找出规律性的结论, 归纳猜想得出a. 或其相关项,然后把前几项代入结论中检验其是否正确。从上述的数列中可以观察出,该数列为典型的立方数列,规律为:13,23,33,43,53,所以我们可以猜想出其通项公式为 an =当然,选择题和填空题并不要求写出其解答过程, 归纳猜想出来的通项公式 只是一个合理猜想,如若遇到解答题,我们猜想出来的公式就还需要用数学归纳 法的思想去检验.2.3迭代法所谓迭代法,就是层层代入,用旧的变量递推新变量的过程,用迭代法解 决数列问题关键是寻找各等式之间的联系,从而求出数列的通项公式。最常见的 方法是累加,累乘法.2.3.1累加法累加法,一般适用于递推
8、数列a二af( n)的类型,遇到此类型的题,一般题干中会告诉31的值,解题思路为:首先把等式化为an 1 - an = f(n),再把当n=1,2,3,4分别代入上述等式中得a? p 二 f (1)a a f (2)aa f (3) an - an 斗=f (n -1) an 1 - a* - f n第一式与第二式相加左边消去了 a2 ,再与第三式相加消去了 a3,依次累加后所以变式得an 1 -印=f 1 f 2 厂亠 f n ,a. - a! = f 1 f 2f n -1,a* = f 1广f 2丨亠 亠f n i亠a1注:f 1 f - f n的结果必然是关于n关系式.在求和过程中可能
9、会 涉及到等差、等比数列的求和方法。2.3.2累乘法累乘法的思想与累加法本质上是一样的,在数列中如果遇到an.1 = f(n)an这种类型,通常先把等式化为an 1 = f(n),分别令n -1,2,3,(n1),再层层代入等an式中得-=f 1 a1理十a2an 二 f n -1an 4an 1 = f nan令各项累乘得an 1 = f 1 f 2f n ,a1化简得anf 1 f 2 f n a所以an = f 1 f 2 f na!,由此可求出数列通项2.4构造新数列法构造法就是在解决某些数学问题的过程中, 通过对条件与结论的充分剖析, 有时会联想出一种适当的辅助模型, 以此促成命题转
10、换,产生新的解题方法,这 种思维方法的特点就是“构造”。在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通 项问题,特别是给出的数列相邻两项是线性关系, 数列递推式较复杂的题型。如 果题型简单,我们可以通过不完全归纳法进行归纳、 猜想,然后借助于数学归纳 法予以证明,然而用数学归纳法证明虽然有固定的模式, 但过程繁琐,用时较多, 而且在新版教材中,数学归纳法的思想很少提到,因而我们遇到这类问题,就要 避免用数学归纳法的思想。构造新的数列,具有辅助计算的效果,一般是构造等 差,等比数列,这样就可以套用等差等比数列的固定通项模型来解决问题。主要方法有待定系数法,不动点法,特征根法等
11、。2.4.1待定系数法待定系数法主要适用于一阶递推式 an pan q ;(其中p,q均为常数,p 式 1,pq 式 0 )、an = pan+q n+c (p,q,c 为常数,pH1, pq 式 0)等.类型一:an1. = pan 7 (其中 p,q 均为常数,p = 1, pq = 0) 假设原递推公式为an 1 - t = p(an - t),其中t J,计算出t 后,就构造成了一个以a! -t为首项,以p为公比的等比1 一 p数列an -t,从而推导出an -t的通项公式。类型二anpan q n,c ( p,q,c 为常数,p = 1,pq=0)此类型为类型一的变式,既然类型一能化
12、成等比数列,那么假设类型二也能 构造成等比数列,假设原递推公式为an 1 A(n 1) B 二 pd An B),化简得an 1 = pan (pA-A) n pB - A - B,又因为anpan qn c所以,系数对应相等得解方程组得pAA = qpB - A - BB =cP -1qp-i2类型二:分式递推式an1pan q can dp -1由此计算出AB后就构造了一个以a, A B为首项,p为公比的等比数列a An B:.用待定系数法求解通项公式,它的核心是通过“待定”将递推公式转化为一 种新的等比数列。通过求新等比数列的通项公式从而求出原数列的通项公式,其实类型一与类型二可归结为a
13、nd=pan f( n),f(n)可以为常函数,一次函数, 二次函数,指数函数,幕函数等,其基本解题思路是在递推式两边加上相同性质 的量,使之成为等差或等比数列.242不动点法方程f (x) =x称为函数f (x)的不动点方程,其根称为函数f (x)的不动点. 对于较复杂的数列递推式,用其他方法难以解决的,可以用不动点法推导数列的 通项。如一阶递推式anpan q;分式递推式:an彳=旦 q (其中p、q、r、6 +hh均为常数,且ph Hqr,r式0 H -匕),都可建立不动点方程.r类型一:一阶线性递推式an1. = pan 7 ( p = 1,pq=0)(对问题中的递推关系式作出一个方程
14、px q,解出方程的解x J ,在原递推式两边同时减1 -p去x ,得到an, = p(an),构造出一个公比为p的等比数列,1 - p1 - p1 - p由此推导出数列的通项公式.数列a ?的特征方程为f x二,由匹/二x,解出不动点设为m, nex + d ex + d1. 若不动点m = n ,原递推式两边同时减去m,化解后得 二王,推出一个新等差数列 1 ,公差为王.由此推 an 彳-m an - m p da*mp d导出an.2. 若不动点 m = n ,递推式两边分别同时减去m,n,再用两式相除得:,其中,推出一个新等比数列出兰,公比为an 1 - nan - np - nea
15、- np _nc243其他构造方法一种类型的题可以有不同的解法,在构造新数列的过程中,最重要的是转化 思想,上述的针对递推式的待定系数法,不动点法在高中数学中相对比较容易理 解,下面介绍几种不常用的构造新数列的方法特征根法类型一:一阶递推式anpan q,针对问递推关系式作出一个方程px q,称之为特征方程,特征根为xi .若ai 则 a. = %,n N ;若ai = Xi,则an = bn xi,其中bn是以p为公比的等比数列,即bn = 0 pn, 0 = ai - 咅.类型一对于由二阶递推式an 2二pan i qan,给出的数列,方程X2 - px - q = 0,叫做数列Qn 的特
16、征方程.(1) 当方程有两相同的特征根Xi,数列$n 1的通项为a (A B)Xin,其中A,B由ai,a2决定,即把n =1,2,代入a (A Bn)x:,得到关于A、B的方 程组,解出A,B后,就得到数列的通项.(2) 当特征方程有两个相异的特征根Xi,X2时,数列a的通项为an = Axin 4 Bx2,其中 A,B 由 s,a?决定,即把 ai,a2,xix 和 n=1,2,代入an二Ax:-Bx;,得到关于A、B的方程组,解出A,B后,就得到数列玄!的通 项类型二,对于分式递推式an 1二空,可作特征根方程X二匹,can +dcx + d(1)当特征方程有两相同的特征根Xi时,若ai
17、贝U a. = Xi,n N :若 a x1,则 an1 x1, nN,其中 bn1一 (n1) C , n N .bna Xp CX(2)当特征方程有两个相异的特征根X1,x;时,则务=X1Cn -x;,门n , Cn - 1其中Cna 一 xa - x;X1CnN.p - X;C特征根法主要针对这三类型的递推式,有固定的公式,相比迭代法,待定 系数法,无技巧可言.但计算简单,所以,当遇到此类型的题若要用此方法时, 最好正确的记住每种类型的公式,然后再进行解题.换元法高中函数一章节中我们经常用换元法来解决当函数式中有根号的情 况,数列是特殊的函数,用换元法解题省去了繁长的计算倒数法:数列中有
18、形如f an 1,an,an & 1=0的关系,女口 an dan - an d an可在1 1等式两边同乘以1,构造一个新等差数列,求出 丄,再求得an.an +anan3.数列通项公式方法的应用例1: (2012年普通高等学校招生全国统一考试湖北卷)已知等差数列 前三项的和为3,前三项的积为8,求等差数列 an的通项公式。解:设等差数列的公差为d,则aa1 d ,a3 二印 2d,由题意得3a1 3d = -3ag d)2d) =8解得ai = 2-d = -3或I,- ai = -4d =3所以,由等差数列通项公式可得a* 二-3n 5或an = 3n - 7此题解题方法为公式法的类型一
19、.由题意可知,该数列为等差数列,所以可 以直接套用等差数列的公式来求通项,例2:已知数列 an的前n项和sn二n2 -1,求an.解:当n=1时a1 = si = 1 1 = 0当n 一 2时a* = Sn - Sn=(n? -1)-(n -1)? - 屮=2n -1J由于a1不适合于此等式,所以_;0(n=1)內 一 2n-1 (n 2)此题解题方法是公式法的类型二,但需要注意的是求出的首项要代入通项中 检验是否也符合.例3.写出下列数列的通项.(1)0,7,26,63,124, -1,1,-5, J 冷2452解:(1)中通过观察可以化为 13-1,23 -1,33-1,441所以通项an
20、 二 n3 -1.1和- 3通分后2_1 3 _5 7 _9可以看出分母是以2为首项的等差数列,分子是从1开始的奇23 45 6(2)中是分数的数列,分子分母从表面上观察不出规律,但把n 2n 数,且项数为奇数时为负,所以 冇=().归纳猜想法的应用关键在于如何利用有限的信息猜出通项,要做好这一点需要清楚数列的本质,它是项数与项之间的函数关系,通过已知的有限项去建立种数学模型,如一次式、二次式、分式、指数式、对数式等形式。例4:已知数列n 满足a2 =2, a. = a.+ ( n K 2),求an。n n分析:观察题干,an =an f(n),此题明显可用迭代法中的累加法进行求解.解:由题意
21、得1an 一 an 42n n1n n -11n -1 n(1)令n=2,3,代入(1)式得a3 -a2 = 1 T3 2 21 1a4 a3:32各式累加得a n _ a2 = T _ 1n,an P T _丄n因为a2 =2,代入(2)式得an =1 - -n例 5:已知数列an 满足 a 2 ,= “中-an ( n 1),求 a193.2n十1分析:这道题求数列的193项具体值,虽然题干中没有明确说明是求通项,但如果把首项a2依次代入and 匚1 an中来求答案显然不可能,所以观察可2n +1知,设f(n)=為;,很明显a二f(n总可以用迭代法中的累乘法求数列的通项公式.然后再求a19
22、3.解:由题意可知,因为所以an 1n 12n 1an4385 .an _ n an2n -1an _2a1 2n T 2n -1an 1 _ n 1an2n 1分别令n =1,2,3,(n -1),有a2 _ 2a13a3 _ 3a25各项等式相乘,有又因为a2,代入上式得所以a193例4与例5是典型的数列类求通项的题,当遇到an anf(n)与ani =f( n)an类型时,用迭代的思想解决快速又简单4例6.已知数列an中,印弓,时1二3an 2n,求 an的通项。5解题思路:a3a 2nnJ-旦-中可以看成是5an3an -2,很显然是一阶递55l6 .丿推式anpan - f(n)的类
23、型,推导这种类型的通项公式,可以用待定系数法解:由题意得32n假设存在A,使得an 1 a 2n 1= 3(anA 2n)5化解有3a n 1an5(一 5心-7A 2n=255所以A7把(2)代入(1)得所以,数列an2是以a11 2n),23-为首项,3为公比的等比数列,该数列通项公752n 13(an5式为an-y 2n=( ai 一2)“-n -13 5丿,所以an此题中因为an1 =pan f( n)中的f(n)为指数型函数,所以待定系数法最为3a + 2合适,若f(n)为常数函数,如amn,贝吐匕题可以用待定系数法、不动点5法、以及特征根法解决,其中以待定系数法最为方便简单例8已知
24、数列中,印=2,a.=今,求:an /的通项。an +7解:因为、an 丿的特征函数 f (x)二 4x_2 ,由 f (x)二 4x一 = x , x2 3x 0, x+7x+7所以 Xi - -1 或 X2 - -2解法一(不动点法)-1和-2为相异的不动点,所以设存在 k,使得an 1 T _ k an1an 12 an2 5所以4an _2 1an 7= k an 14an - 2 . 2an 2 an 7化简有所以有an 1 T _ 5 an1an 126 an2因此数列丿an 1an 2是以亍为首项,公比为6的等比数列.其通项公式为a. 1 ai 1 5 an 2 -6n-146an-4解法二:(特征根法)因为两相异的特征根为 捲- -1, x2 - -2,所以an其中Cnai - X|( p -a - x?P - X2 c所以an-1 3 24
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业装修管理2025年度合同2篇
- 二零二五版智慧城市建设综合服务合同5篇
- 2025年度定制门窗设计与安装服务合同4篇
- 2025版企业食堂特色牛羊肉原料供应及配送合作协议3篇
- 烟台某零售企业2025年度供货合同的标的与义务3篇
- 2025年高校食堂直供生鲜水果采购合作协议3篇
- 2025年餐饮店食品安全监管服务合同范本3篇
- 2025年铁艺栏杆工程制作、安装及保养服务协议3篇
- 二零二五年房产中介佣金调整补充协议书3篇
- 2025年度智能教育平台建设与运营合同范本3篇
- 2024年安全教育培训试题附完整答案(夺冠系列)
- 2025新译林版英语七年级下单词默写表
- 《锡膏培训教材》课件
- 断绝父子关系协议书
- 福建省公路水运工程试验检测费用参考指标
- 《工程勘察资质分级标准和工程设计资质分级标准》
- 小学语文阅读教学落实学生核心素养方法的研究-中期报告
- 眼内炎患者护理查房课件
- 2021-2022学年四川省成都市武侯区部编版四年级上册期末考试语文试卷(解析版)
- 中国传统文化服饰文化
- 大气污染控制工程 第四版
评论
0/150
提交评论