版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆与圆的位置关系一、选择题1. (2014山东枣庄,第5题3分)O1和O2的直径分别是6cm和8cm,若圆心距O1O2=2cm,则两圆的位置关系是( )A外离B外切C相交D内切考点:圆与圆的位置关系分析:由O1、O2的直径分别为8和6,圆心距O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得两圆位置关系解答:解:O1、O2的直径分别为6cm和8cm,O1、O2的半径分别为3cm和4cm,1d7,圆心距O1O2=2,O1与O2的位置关系是相交故选C点评:此题考查了圆与圆的位置关系此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题
2、的关键2. (2014娄底6(3分)若两圆的半径分别为2cm和6cm,圆心距为了8cm,则两圆的位置关系为()A外切B相交C内切D外离考点:圆与圆的位置关系分析:根据数量关系来判断两圆的位置关系设两圆的半径分别为R和r,且Rr,圆心距为d:外离,则dR+r;外切,则d=R+r;相交,则RrdR+r;内切,则d=Rr;内含,则dRr解答:解:根据题意,得:R+r=8cm,即R+r=d,两圆外切故选A点评:本题主要考查圆与圆的位置关系与数量关系间的联系,属于基础题3(2014四川遂宁,第7题,4分)若O1的半径为6,O2与O1外切,圆心距O1O2=10,则O2的半径为()A4B16C8D4或16考
3、点:圆与圆的位置关系分析:设两圆的半径分别为R和r,且Rr,圆心距为d:外离,则dR+r;外切,则d=R+r;相交,则RrdR+r;内切,则d=Rr;内含,则dRr解答:解:因两圆外切,可知两圆的外径之和等于圆心距,即R+r=O1O2所以R=0102r=106=4故选A点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法4(2014四川泸州,第10题,3分)如图,O1,O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm若O1以1cm/s的速度沿直线l向右匀速运动(O2保持静止),则在7s时刻O1与O2的位置关系是()A外切B相交C内含D内切解答:解:O
4、1O2=8cm,O1以1cm/s的速度沿直线l向右运动,7s后停止运动,7s后两圆的圆心距为:1cm,此时两圆的半径的差为:32=1cm,此时内切,故选D点评:本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案5(2014甘肃兰州,第8题4分)两圆的半径分别为2cm,3cm,圆心距为2cm,则这两个圆的位置关系是()A外切B相交C内切D内含考点:圆与圆的位置关系分析:由两个圆的半径分别是3cm和2cm,圆心距为2cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系解答:解:两个圆的半径分别是3cm和2c
5、m,圆心距为2cm,又3+2=5,32=1,125,这两个圆的位置关系是相交故选B点评:此题考查了圆与圆的位置关系注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键6(2014广州,第5题3分)已知和的半径分别为2cm和3cm,若,则和的位置关系是( )(A)外离 (B) 外切 (C)内切 (D)相交【考点】圆与圆的位置关系【分析】两圆圆心距大于两半径之和,两圆外离【答案】A 7. (2014扬州,第5题,3分)如图,圆与圆的位置关系没有()(第1题图)A相交B相切C内含D外离考点:圆与圆的位置关系分析:由其中两圆有的位置关系是:内切,外切,内含、外离即可求得答案解
6、答:解:如图,其中两圆有的位置关系是:内切,外切,内含、外离其中两圆没有的位置关系是:相交故选A点评:此题考查了圆与圆的位置关系注意掌握数形结合思想的应用8.(2014济宁,第10题3分)如图,两个直径分别为36cm和16cm的球,靠在一起放在同一水平面上,组成如图所示的几何体,则该几何体的俯视图的圆心距是()A10cmB24cmC26cmD52cm考点:简单组合体的三视图;勾股定理;圆与圆的位置关系分析:根据两球相切,可得球心距,根据两圆相切,可得圆心距是半径的和,根据根据勾股定理,可得答案解答:解:球心距是(36+16)2=26,两球半径之差是(3616)2=10,俯视图的圆心距是=24c
7、m,故选:B点评:本题考查了简单组合体的三视图,利用勾股定理是解题关键9. (2014贵州黔西南州, 第6题4分)已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为()A外离B内含C相交D外切考点:圆与圆的位置关系分析:由O1、O2的半径分别是3、5,O1O2=8,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出O1和O2的位置关系解答:解:O1、O2的半径分别是3、5,O1O2=8,又3+5=8,O1和O2的位置关系是外切故选D点评:此题考查了圆与圆的位置关系解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系10. (2014年广西钦州,第9
8、题3分)如图,等圆O1和O2相交于A、B两点,O1经过O2的圆心O2,连接AO1并延长交O1于点C,则ACO2的度数为()A 60B45C30D20考点:相交两圆的性质;等边三角形的判定与性质;圆周角定理分析:利用等圆的性质进而得出AO1O2是等边三角形,再利用圆周角定理得出ACO2的度数解答:解:连接O1O2,AO2,等圆O1和O2相交于A、B两点,O1经过O2的圆心O2,连接AO1并延长交O1于点C,AO1=AO2=O1O2,AO1O2是等边三角形,AO1O2=60,ACO2的度数为;30故选;C点评:此题主要考查了相交两圆的性质以及等边三角形的判定和圆周角定理等知识,得出AO1O2是等边
9、三角形是解题关键11(2014青岛,第5题3分)已知O1与O2的半径分别是2和4,O1O2=5,则O1与O2的位置关系是()A内含B内切C相交D外切考点:圆与圆的位置关系分析:由O1、O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系解答:解:O1、O2的半径分别是2、4,半径和为:2+4=6,半径差为:42=2,O1O2=5,266,O1与O2的位置关系是:相交故选C点评:此题考查了圆与圆的位置关系注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系12. (2014攀枝花,第7题3分)下列说法正确的是()A多边
10、形的外角和与边数有关B平行四边形既是轴对称图形,又是中心对称图形C当两圆相切时,圆心距等于两圆的半径之和D三角形的任何两边的和大于第三边考点:多边形内角与外角;三角形三边关系;圆与圆的位置关系;中心对称图形分析:根据多边形的外角和是360,可以确定答案A;平行四边形只是中心对称图形,可以确定答案B;当两圆相切时,可分两种情况讨论,确定答案C;三角形的两边之和大于第三遍,可以确定答案D解答:解:A、多边形的外角和是360,所以多边形的外角和与边数无关,所以答案A错误;B、平行四边形只是中心对称图形,不是轴对称图形,所以答案B错误;C、当两圆相切时,分两种情况:两圆内切和两圆外切,结果有两种,所以
11、答案C错误;D、答案正确故选:D点评:本题考查了基本定义的应用,解答此类问题的关键在于熟练记住基本定理、性质以及公式的运用二、填空题1. (2014烟台)18如图,AOB=45,点O1在OA上,OO1=7, O1的半径为2,点O2在射线OB上运动,且O2始终与OA相切,当O2和O1相切时,O2的半径等于考点:圆和圆相切的性质,勾股定理分析:作O2COA于点C,连接O1O2,设O2C=r,根据O1的半径为2,OO1=7,表示出O1O2=r+2,O1C=7r,利用勾股定理列出有关r的方程求解即可解答:如图,作O2COA于点C,连接O1O2,设O2C=r,AOB=45,OC=O2C=r,O1的半径为
12、2,OO1=7,O1O2=r+2,O1C=7r,(7r)2+r2=(r+2)2,解得:r=3或15,故答案为:3或15点评:本题考查了圆与圆的位置关系,解题的关键是正确的作出图形,难度中等2. (2014湖南张家界,第13题,3分)已知O1与2外切,圆心距为7cm,若O1的半径为4cm,则O2的半径是3cm考点:圆与圆的位置关系分析:根据两圆外切时,圆心距=两圆半径的和求解解答:解:根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是74=3cm故答案为:3点评:本题考查了圆与圆的位置关系,注意:两圆外切,圆心距等于两圆半径之和3. (2014江苏徐州,第17题3分)如图,以O为圆心的两个同心
13、圆中,大圆与小圆的半径分别为3cm和1cm,若圆P与这两个圆都相切,则圆P的半径为1或2cm考点:圆与圆的位置关系专题:分类讨论分析:如解答图所示,符合条件的圆P有两种情形,需要分类讨论解答:解:由题意,圆P与这两个圆都相切若圆P与两圆均外切,如图所示,此时圆P的半径=(31)=1cm;若圆P与两圆均内切,如图所示,此时圆P的半径=(3+1)=2cm综上所述,圆P的半径为1cm或2cm故答案为:1或2点评:本题考查了圆与圆的位置关系,解题的关键是确定如何与两圆都相切,难度中等3(2014年四川资阳,第14题3分)已知O1与O2的圆心距为6,两圆的半径分别是方程x25x+5=0的两个根,则O1与
14、O2的位置关系是相离考点:圆与圆的位置关系;根与系数的关系菁优网分析:由O1与O2的半径r1、r2分别是方程x25x+5=0的两实根,根据根与系数的关系即可求得O1与O2的半径r1、r2的和,又由O1与O2的圆心距d=6,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系解答:解:两圆的半径分别是方程x25x+5=0的两个根,两半径之和为5,解得:x=4或x=2,O1与O2的圆心距为6,65,O1与O2的位置关系是相离故答案为:相离点评:此题考查了圆与圆的位置关系与一元二次方程的根与系数的关系注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题
15、的关键三.解答题1. (2014乐山,第26题12分)如图,O1与O2外切与点D,直线l与两圆分别相切于点A、B,与直线O1、O2相交于点M,且tanAM01=,MD=4(1)求O2的半径;(2)求ADB内切圆的面积;(3)在直线l上是否存在点P,使MO2P相似于MDB?若存在,求出PO2的长;若不存在,请说明理由考点:圆的综合题.专题:综合题分析:(1)连结O1A、O2B,设O1的半径为r,O2的半径为R,根据两圆相切的性质得到直线O1O2过点D,则MO2=MD+O2D=4+R,再根据切线的性质由直线l与两圆分别相切于点A、B得到O1AAB,O2BAB,然后根据特殊角的三角函数值得到AM01
16、=30,在RtMBO2中,根据含30度的直角三角形三边的关系得MO2=O2B=2R,于是有4+R=2R,解得R=4;(2)利用互余由AM02=30得到MO2B=60,则可判断O2BD为等边三角形,所以BD=O2B=4,DBO2=60,于是可计算出ABD=30,同样可得MO1A=60,利用三角形外角性质可计算得O1AD=MO1A=30,则DAB=60,所以ADB=90,在RtABD中,根据含30度的直角三角形三边的关系得AD=BD=4,AB=2AD=8,利用直角三角形内切圆的半径公式得到ADB内切圆的半径=22,然后根据圆的面积公式求解;(3)先在RtMBO2中,根据含30度的直角三角形三边的关
17、系得MB=O2B=12,然后分类讨论:MO2P与MDB有一个公共角,当MO2PMDB时,利用相似比可计算出O2P=8;当MO2PMBD时,利用相似比可计算出O2P=8解答:解:(1)连结O1A、O2B,如图,设O1的半径为r,O2的半径为R,O1与O2外切与点D,直线O1O2过点D,MO2=MD+O2D=4+R,直线l与两圆分别相切于点A、B,O1AAB,O2BAB,tanAM01=,AM01=30,在RtMBO2中,MO2=O2B=2R,4+R=2R,解得R=4,即O2的半径为4;(2)AM02=30,MO2B=60,而O2B=O2D,O2BD为等边三角形,BD=O2B=4,DBO2=60,
18、ABD=30,AM01=30,MO1A=60,而O1A=O1D,O1AD=O1DA,O1AD=MO1A=30,DAB=60,ADB=1803060=90,在RtABD中,AD=BD=4,AB=2AD=8,ADB内切圆的半径=22,ADB内切圆的面积=(22)2=(168);(3)存在在RtMBO2中,MB=O2B=4=12,当MO2PMDB时,=,即=,解得O2P=8;当MO2PMBD时,=,即=,解得O2P=8,综上所述,满足条件的O2P的长为8或8点评:本题考查了圆的综合题:熟练掌握切线的性质、两圆相切的性质和直角三角形内切圆的半径;会利用含30度的直角三角形三边的关系和三角形相似比进行几
19、何计算;会运用分类讨论的思想解决数学问题2. (2014年江苏南京,第26题)如图,在RtABC中,ACB=90,AC=4cm,BC=3cm,O为ABC的内切圆(1)求O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若P与O相切,求t的值 (第1题图)考点:圆的性质、两圆的位置关系、解直角三角形分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值解答:(1)如图1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024届安徽省铜陵市重点名校高三八校联考数学试题(四)
- 九年级语文上册教案全集
- 魔法屋课件教学
- 人教版物理八年级下册 专项训练卷 (一)力、运动和力(含答案)
- 贵州省六盘水市2024-2025学年高一上学期11月期中地理试题(无答案)
- 2024-2025学年北京市顺义区牛栏山一中高三(上)月考物理试卷(10月份)(含答案)
- 搁板置物架市场发展预测和趋势分析
- 套鞋产业规划专项研究报告
- 宠物猫砂箱用除臭剂产业运行及前景预测报告
- 人教版英语八年级下册 暑假复习Unit 8-Unit10 小检测
- 陕西省榆林市定边县2024-2025学年七年级上学期期中考试语文试题
- GB/T 22838.7-2024卷烟和滤棒物理性能的测定第7部分:卷烟含末率
- 第四单元认位置(单元测试)2024-2025学年一年级数学上册苏教版
- 国有企业管理人员处分条例(2024)课件
- 第7课 实践出真知-【中职专用】2024年中职思想政治《哲学与人生》金牌课件(高教版2023·基础模块)
- 三年级数学上册典型例题系列之第一单元:时间计算问题专项练习(原卷版+解析)
- 《电工电子技术基础》高职全套教学课件
- 岩浆矿床实习报告(四川攀枝花钒钛磁铁矿矿床)
- 燃气管道-流量-流速-口径计算公式
- 往生荐亡功德文疏
- 第二章流体静力学
评论
0/150
提交评论