全国高中数学说课大赛一等奖作品:杨辉三角”与二项式系数说课稿_第1页
全国高中数学说课大赛一等奖作品:杨辉三角”与二项式系数说课稿_第2页
全国高中数学说课大赛一等奖作品:杨辉三角”与二项式系数说课稿_第3页
全国高中数学说课大赛一等奖作品:杨辉三角”与二项式系数说课稿_第4页
全国高中数学说课大赛一等奖作品:杨辉三角”与二项式系数说课稿_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、“杨辉三角”与二项式系数的性质人教A版数学选修2-3第1章第3节第2课时一、教材背景分析1教材的地位和作用“杨辉三角”与二项式系数的性质是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时. 教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的

2、前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处. 这一过程不仅有利于培养学生的思维能力、理性精神和实践能力,也有利于学生理解本节课的核心数学知识,发展其数学应用意识. 研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.2学情分析知识结构:学生已学习两个计数原理和二项式定理,再让学生课前探究“杨辉三角”包含的规律,结合“杨辉三角”,并从函数的角度研究二项式系数的性质

3、.心理特征:高二的学生已经具备了一定的分析、探究问题的能力,恰时恰点的问题引导就能建立知识之间的相互联系,解决相关问题.3教学重点与难点重点:体会用函数知识研究问题的方法,理解二项式系数的性质.难点:结合函数图象,理解增减性与最大值时,根据n的奇偶性确定相应的分界点;利用赋值法证明二项式系数的性质.关键:函数思想的渗透.二、教学目标1通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.2通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力

4、.3通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决问题的“再创造”过程.4通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.三、教法选择和学法指导教法:问题引导、合作探究学法:从课前探究和课上展示中感知规律,结合“杨辉三角”和函数图象性质领悟性质,在探究证明性质中理解知识,螺旋上升地学习核心数学知识和渗透重要数学思想.四、教学基本流程设计展示成果话杨辉

5、感知规律悟性质联系旧知探新知合作交流议方法反馈升华拨思路悬念小结再求索五、教学过程1. 展示成果话杨辉课前开展学习活动:了解“杨辉三角”的历史背景、地位和作用,探究与发现“杨辉三角”包含的规律.(1)学生从不同的角度畅谈“杨辉三角”,对它有何了解及认识.(2)各小组展示探究与发现的成果“杨辉三角”包含的一些规律.【设计意图】引导学生开展课外学习,了解“杨辉三角”,探究与发现“杨辉三角”包含的规律,弘扬我国古代数学文化;展示探究与发现的杨辉三角的规律,为学习二项式系数的性质埋下伏笔.2. 感知规律悟性质通过课外学习,同学们观察发现了杨辉三角的一些规律,并且知道杨辉三角的第行就是展开式的二项式系数

6、,展开式的二项式系数具有杨辉三角同行中的规律对称性和增减性与最大值.【设计意图】寻找二项式系数与杨辉三角的关系,从而让学生理解二项式系数具有杨辉三角同行中的规律.3. 联系旧知探新知【问题提出】怎样证明展开式的二项式系数具有对称性和增减性与最大值呢?【问题探究】探究:(1)展开式的二项式系数,可以看成是以为自变量的函数吗?它的定义域是什么?(2)画出和7时函数的图象,并观察分析他们是否具有对称性和增减性与最大值.(3)结合杨辉三角和所画函数图象说明或证明二项式系数的性质.对称性:与首末两端“等距离”的两个二项式系数相等增减性与最大值:,所以相对于的增减情况由决定由可知,当时,二项式系数是逐渐增

7、大的由对称性知它的后半部分是逐渐减小的,且在中间取得最大值当的偶数时,中间的一项取得最大值;当是奇数时,中间的两项,相等,且同时取得最大值【设计意图】教师引导学生用函数思想探究二项式系数的性质,学生画图并观察分析图象性质;运用特殊到一般、数形结合的数学思想归纳二项式系数的性质,升华认识;通过分组讨论、自主探究、合作交流,说明或证明二项式系数的对称性和增减性与最大值,提高学生合作意识.4. 合作交流议方法【继续探究】问题:展开式的各二项式系数的和是多少?探究:(1)计算展开式的二项式系数的和(=1,2,3,4,5,6).(2)猜想展开式的二项式系数的和.(3)怎样证明你猜想的结论成立?赋值法:已

8、知,令,则这就是说,的展开式的各个二项式系数的和等于元集合子集的个数(两个计数原理).分类计数原理:分步计数原理:个2相乘,即所以【问题拓展】你能求吗?在展开式中,令,则得,即,所以,在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.【设计意图】通过学生归纳猜想各二项式系数的和,引导学生验证猜想结论是否正确;同时为了突破利用赋值法证明二项式系数性质的难点,引导学生从模型化的角度出发,多角度的分析问题、探究问题、解决问题,将学生思维推向高潮,既加深学生对前后知识的内在联系的理解,又从深度和广度上让学生感受数学知识的串联和呼应.5. 反馈升华拨思路练1的展开式中的第四项和第八项的二项

9、式系数相等,则等于 .练2的展开式中前 项的二项式系数逐渐增大,后半部分逐渐减小,二项式系数取得最大值的是第 项.练3已知,求:(1);(2).【设计意图】促进学生进一步掌握二项式系数的性质,学会用赋值法解决问题,促进其有意识的运用6. 悬念小结再求索【课堂小结】 通过本节课的学习,你有什么收获和体会(从数学和生活的角度)?还有什么疑问吗?【课堂延伸】今天同学们展示了一些杨辉三角的规律,但是作为我国古代数学重要成就之一的杨辉三角还有更多有趣的规律,相信大家一定有极高的热情和严谨的态度去探究与发现杨辉三角的奥妙之处.【课外活动】(研究性学习)活动主题:杨辉三角中的奥妙.活动目标:探究与发现杨辉三角中的更多奥妙.活动方案步骤:查阅资料,收集信息;独立思考,发现规律,猜想证明;合作探究,小组讨论,形成初步结论;与指导老师及其他小组成员交流展示;撰写研究性学习报告.【设计意图】通过课堂的整理、总结与反思,使学生更好的掌握主干

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论