![人教版八年级数学-三角形-知识点+考点+典型例题(含答案)_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-5/27/60db75b8-64b0-4d1d-956b-c4f0c58d4b56/60db75b8-64b0-4d1d-956b-c4f0c58d4b561.gif)
![人教版八年级数学-三角形-知识点+考点+典型例题(含答案)_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-5/27/60db75b8-64b0-4d1d-956b-c4f0c58d4b56/60db75b8-64b0-4d1d-956b-c4f0c58d4b562.gif)
![人教版八年级数学-三角形-知识点+考点+典型例题(含答案)_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-5/27/60db75b8-64b0-4d1d-956b-c4f0c58d4b56/60db75b8-64b0-4d1d-956b-c4f0c58d4b563.gif)
![人教版八年级数学-三角形-知识点+考点+典型例题(含答案)_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-5/27/60db75b8-64b0-4d1d-956b-c4f0c58d4b56/60db75b8-64b0-4d1d-956b-c4f0c58d4b564.gif)
![人教版八年级数学-三角形-知识点+考点+典型例题(含答案)_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-5/27/60db75b8-64b0-4d1d-956b-c4f0c58d4b56/60db75b8-64b0-4d1d-956b-c4f0c58d4b565.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第七章三角形【知识要点】 一认识三角形 1关于三角形的概念及其按角的分类 定义:由不在同一直线 上的三条线段 首尾顺次相接 所组成的图形叫做三角形。2. 三角形的分类: 三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。 三角形按边分为两类:等腰三角形和不等边三角形。2 关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得: 三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。3与三角形有关的线段.:三角形的角平分线、中线和高 三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段; 三角形的中线:连接三角形的
2、一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。 注意:三角形的角平分线、中线和高都是线段,不是直线,也不是射线; 任意一个三角形都有三条角平分线,三条中线和三条高; 任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置: 锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直 角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。 一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。(三角形的
3、三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。)4. 三角形的内角与外角(1)三角形的内角和:180 引申:直角三角形的两个锐角互余; 一个三角形中至多有一个直角或一个钝角; 一个三角中至少有两个内角是锐角。(2)三角形的外角和: 360(3)三角形外角的性质: 三角形的一个外角等于与它不相邻的两个内角的和;常用来求角度 三角形的一个外角大于任何一个与它不相邻的内角。常用来比较角的大小5. 多边形的内角与外角多边形的内角和与外角和(识记)正n边形34568101215内角和180 360 5
4、40 720 1080 1440 1800 2340 外角和360 360 360 360 360 360 360 360 每一个内角60 90 108 120 135 144 150 158 (n 2)180 卡360)或 180nn每一个外角180 (n 2)180 或360nn120 90 72 60 45 36 30 22 (1) 多边形的内角和:(n-2 ) 180 (2) 多边形的外角和:360引申:(1)从n边形的一个顶点出发能作(n-3)条对角线;(2)多边形有2(2 3)条对角线。2(3) 从n边形的一个顶点出发能将n边形分成(n-2)个三角形; 探6.镶嵌(1)同一种正三边
5、形、正四边形、正六边形可以进行平面镶嵌;(2)正三角形与正四边形、正三角形与正六边形可以进行平面镶嵌;(1)同一种任意三角形、任意四边形可以进行镶嵌。【典型例题】三角形的分类例题1 :具备下列条件的三角形中,不是直角三角形的是(B )。A: / A+Z B=Z C B :/ A=Z B= / C C :/ A=90 - / B D :/ A- / B=90例题2 :等腰三角形一腰上的高与另一腰的夹角为30,则顶角的度数为(D )A. 60B . 120C. 60 或 150D . 60 或 120练习:1、如图,下列说法错误的是A、Z B / ACD BCZ B+Z ACB Z B如图,Z 1
6、+Z 2+Z 3+Z 4等于多少度;(280 )2、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是(C ).A、直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定三角形的内角和、外角和相关的计算与证明例题1 :若三角形的三个外角的比为 A.锐角三角形B 直角三角形例题2 :已知等腰三角形的一个外角为 练习:1、如图,若Z AEC=100 , Z B=45 A. 125 B.115 C. 1103: 4: 5,则这个三角形为(B ).C .等边三角形D.钝角三角形150,则它的底角为.,Z C=38,则 Z DFE等于(A )D.1052、如图,/仁3、如图,则/ 1=, / 2
7、=, / 3=,4、 已知等腰三角形的一个外角是120,则它是(C )A.等腰直角三角形B.般的等腰三角形C.等边三角形D.等腰钝角三角形5、如果三角形的一个外角和与它不相邻的两个内角的和为180 ,那么与这个外角相邻的内角的度数为(C )A. 30 B. 60 C. 906、已知三角形的三个外角的度数比为A. 90 B.110 C. 100D.1202 : 3 : 4,则它的最大内角的度数 (D ).D. 120例7.如图(1)所示,仝:中,-的平分线交于点 二,7(1)(2)(3)变式1:如图(2)所示,止门中,内角二和外角j二匚的平分线交于点-,ZOC=-ZA求证:-变式2:如图(3)所
8、示, 止口中,外角一d丄 的平分线交于点3 ,ZOC=90-Z.4求证:-分析:本题已知厶二匚的内角平分线和外角平分线,从而想到可利用三角形角平分线的性质,三角 形的内角和定理以及外角与内角的关系证题。解答:如图(1),V在 上厂中,上T 一-二一二: 又.一一_ 的平分线交于点,Z1+Z2 二丄(AABC= - (180c-ZA) = 50- -ZA._ll_l在厶 BOC 中,ZB0C=l9- (NZ/2) = 120Q-(90Q-904|zZ变式 1:,.丄是二一i的一个外角,. C = 1 -.: GO平分/出口门 B0平分冃是八ABC的外角Z2=-ZA + 1 1一,即卩1Zt9C=
9、-XA-hZl-Zl = -A变式 2:在中,ZOC=1SOC-(Z1+Z2)在厶 ABC 中,A4C + ZCT= 180-Z/l.三平分_二二,且-丄上三点共线,.24=1和匚乙4C,同理可证 辺三刖_SCZl + Z2 =3-ASC lE-Zra+2 2A30U二 180- (J+Z2)二 120-(90。+ 丄)二 9(T-2厶BD,CE例5.已知:如图,在匚中,二_匚二匚二三上迁,亠_分别是边上的高, 相交于U,求一三巴二的度数。分析: 由已知可求 一:-一-,- 在二.二I 中,故先求- 和_二二。解答:.厶q _三:二二-三.设_ ,贝yj- ”.丨 L:二-.二,解得,【一 .
10、三匸|为 二 边上的高, .在 RABDC 中,ADBC=-ZACB = 90-75 = 15 同理一- ?:.在三中,_=二一.二一 1:-例题1 :若一个多边形的内角和与外角和相等,则这个多边形是(A )A 三角形B 六边形C.五边形D 四边形例题2 :下列说法错误的是( A )A 边数越多,多边形的外角和越大B.多边形每增加一条边,内角和就增加180C.正多边形的每一个外角随着边数的增加而减小D 六边形的每一个内角都是120例题3 :一个多边形内角和与其中一个外角的总和为1360这个多边形的边数为 9例题4 :一个多边形的每一个外角都是24,则此多边形的内角和( B )A 2160 B.
11、 2340 C. 2700 D. 2880练习:1一个多边形内角和是1080,则这个多边形的边数为(B )A、6B、7C、8D、92一个多边形的内角和是外角和的2倍,它是(C)A、四边形 B、五边形 C、六边形D、八边形3一个多边形的边数增加一倍,它的内角和增加(A )A. 180 B. 360 C. (n-2) 180 D. n 1804、 若一个多边形的内角和与外角和相加是1800,则此多边形是(B )A、八边形 B、十边形 C、十二边形 D、十四边形5、 正方形每个内角都是90,每个外角都是90。6、 多边形的每一个内角都等于150 ,则从此多边形一个顶点出发引出的对角线有_9 _条。7
12、、 正六边形共有9条对角线,内角和等于720,每一个内角等于120。8、 内角和是1620 的多边形的边数是_11。9、 如果一个多边形的每一外角都是24,那么它是_15边形。10、 将一个三角形截去一个角后,所形成的一个新的多边形的内角和180 或360 。11、 一个多边形的内角和与外角和之比是5 : 2,则这个多边形的边数为8。12、 一个多边形截去一个角后,所得的新多边形的内角和为2520 ,则原多边形有 15或16或17 条边。150度.13. 已知一个十边形中九个内角的和的度数是1290,那么这个十边形的另一个内角为考点六:镶嵌例题1:装饰大世界出售下列形状的地砖:正方形;(长方形
13、; 正五边形;(可正六边形。若只选购其中某一种地砖镶嵌地面,可供选用的地砖有(B )A.例题2 :边长相等的下列两种正多边形的组合,不能作平面镶嵌的是(B )A.正方形与正三角形B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形练习:1. 下列正多边中,能铺满地面的是( B )A、正方形 B、 正五边形 C 、 等边三角形 D、 正六边形2. 下列正多边形的组合中,不能够铺满地面的是(D ).A.正六边形和正三角形B. 正三角形和正方形 C.正八边形和正方形D. 正五边形和正八边形3. 用正三角形和正十二边形镶嵌,可能情况有(B )种.A 1 B、2 C、3 D、44. 某装饰公司出售下列形状的地砖:正方形;长方形;正五边形;正六边形若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有 (C ) 种.A、1 B、2 C、3 D、45. 小李家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则小李不应购买的地砖形状是(C )A、正方形 B、正六边形 C、正八边形 D、正十二边形6. 用正三角形和正四边形作平面镶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育用品企业品牌塑造与推广考核试卷
- 二零二五年度水泥路面施工环保监测与治理合同
- 2025-2030年可发光颜料行业深度调研及发展战略咨询报告
- 2025-2030年塑木户外照明支架行业深度调研及发展战略咨询报告
- 2025-2030年城市通勤智能自行车锁行业跨境出海战略研究报告
- 2025-2030年口腔护理漱口水便携装行业深度调研及发展战略咨询报告
- 2025-2030年手工艺教材店企业制定与实施新质生产力战略研究报告
- 2025-2030年拳击耐力训练器行业跨境出海战略研究报告
- 2025-2030年散状物料自动称重与配料企业制定与实施新质生产力战略研究报告
- 咖啡馆音乐搭配考核试卷
- 建筑公司工程财务报销制度(精选7篇)
- 降水预报思路和方法
- 工程设计方案定案表
- 第一章-天气图基本分析方法课件
- 虚位移原理PPT
- 初二物理弹力知识要点及练习
- QE工程师简历
- 辅音和辅音字母组合发音规则
- 2021年酒店餐饮传菜员岗位职责与奖罚制度
- 最新船厂机舱综合布置及生产设计指南
- 可降解塑料制品项目可行性研究报告-完整可修改版
评论
0/150
提交评论