版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录1 引言 12 问题描述 23 基于遗传算法 TSP 算法 23.1 基于遗传算法的 TSP 算法总体框架 23.2 算法的详细设计 33.2.1 解空间的表示方式 33.2.2 种群初始化 43.2.3适应度函数 43.2.4选择操作 43.2.5交叉操作 53.2.6变异操作 63.2.7 进化逆转操作 63.3 实验结果分析 74 基于模拟退火算法的 TSP 算法 104.1 SA 算法的实现过程 104.2 算法流程图 104.3 模拟退火算法的实现过程 104.4 实验结果 115 对两种算法的评价 145.1 遗传算法优缺点 145.2 模拟退火算法的优缺点 156 结语 15
2、参考文献 17附录: 错 误!未定义书签。廊坊师范学院本科生毕业论文论文题目 :基于遗传算法与模拟退火算法的 TSP 算法求解 10 大城市最短旅途论文摘要:TSP问题为组合优化中的经典的 NP完全问题.本论文以某旅行社为中 国十大旅游城市 -珠海、西安、杭州、拉萨、北京、丽江、昆明、成 都、洛阳、威海制定最短旅途为例,分别利用基于遗传算法的 TSP 算法与基于模拟退火算法的 TSP 算法求解 10 大城市旅游路线问题 . 本论文给出了遗传算法与模拟退火算法中各算子的实现方法, 并展示 出求解系统的结构和求解系统基于 MATLAB 的实现机制 利用 MATLAB 软件编程,运行出结果,并对基于
3、遗传算法的 TSP 算法结 果与基于模拟退火算法的TSP算法的结果进行比较,描述其优缺点, 并选择最为恰当的 TSP 算法,实现最短旅途的最优解 .关键词:遗传算法;模拟退火算法;TSP;最短路径;Title : TSP Algorithm Based on Genetic Algorithm or Simulated Annealing Algorithm for Solving the Shortest Journey o1f 0 CitiesAbstract : TSP problem is a classic NP problem about combinatorial optimiz
4、ation This article takes a travel agency looking for the shortest trip of ten tourist cities in ChinaZhuhai, Xian, Hangzhou, Lhasa, Beijing , Lijiang , Kunming , Chengdu, Luoyang and Weihai for instance, and solves this problem by TSP algorithm based on genetic algorithm and simulated annealing algo
5、rithm The article gives the implementations of every operator of genetic algorithm and simulated annealing algorithm and demonstrates the architecture and the implementation mechanism of the solving system based on MATLAB I program and operate the results by MATLAB software,and compare the results b
6、ased on genetic algorithm and simulated annealing algorithm And describe their advantages and disadvantages so that choose the most appropriate TSP algorithm to achieve the optimal solution for the shortest pathKeywords:genetic algorithm;simulated annealing algorithm;TSP;the shortest path1 引言TSP问题为组
7、合优化中的经典问题,已经证明为一 NP完全问题,即其 最坏情况下的时间复杂性随着问题规模的扩大,按指数方式增长 2,到目前 为止不能找到一个多项式时间的有效算法.TSP问题可描述为:已知n个城市相 互之间的距离,某一旅行商从某个城市出发访问每个城市一次且仅一次,最 后回到出发城市,如何安排才使其所走路线最短 .TSP问题不仅仅是一个简单 的组合优化问题,其他许多的 NP 完全问题可以归结为 TSP 问题,如邮路问 题、装配线上的螺帽问题和产品的生产安排问题等,使得TSP问题的有效求解具有重要的意义本文中的TSP算法主要采用遗传算法与模拟退火算法.遗传算法是一种进化算法,其基本原理是仿效生物界中
8、的“物竞天择, 适者生存”的演化法则 3 遗传算法把问题参数编码为染色体,再按照所选 择的适应度函数,利用迭代的方式进行选择、交叉、变异以及进化逆转等运 算对个体进行筛选和进化,使适应值大的个体被保留,适应值小的个体被淘 汰 4 ,新的群体继承了上一代的信息,又优于上一代,这样反复循环,直至 满足条件,最后留下来的个体集中分布在最优解的周围,筛选出最优个体作 为问题的解模拟退火算法的出发点是基于物理中固体物质的退火过程与一般的组合 优化问题之间的相似性 5 ,该算法是一种优化算法,其物理退火过程由三部 分组成,分别为:加温过程、等温过程、冷却过程其中,加温过程对应算 法设定初温, 等温过程对应
9、算法的 Metropolis 6抽样过程, 冷却过程对应控制 参数的下降这里能量的变化就是目标函数,要得到的最优解就是能量最低 态 7 Metropolis 准则是 SA 算法收敛于全局最优解的关键所在, Metropolis 准则以一定的概率接受恶化解,这样就使算法跳离局部最优的陷阱2问题描述本案例为某旅行社为中国十大旅游城市,分别为珠海、西安、杭州、拉萨、 北京、丽江、昆明、成都、洛阳、威海,根据全程路径最短为目的,制定最优的 旅游顺序依次游玩这十个城市这类问题就由TSP算法来解决,寻找出一条最短 遍历这10个城市的路径.利用google地图找到城市坐标,下表为这十个城市的位 置坐标如表2
10、-1所示.表2-110个城市的位置坐标城市编号X坐标Y坐标城市编号X坐标Y坐标122.31113.58626.86100.23234.37108.95724.89102.83330.29120.16830.59104.07429.6691.14934.65112.46539.95116.411037. 53122.133基于遗传算法TSP算法3.1 基于遗传算法的TSP算法总体框架TSP问题的遗传算法包括编码设计、种群初始化、适应度函数选择、终止条 件设定、选择操作设定、交叉操作设定以及变异操作设定和进化逆转操作 .为简 化TSP问题的求解,假设每个城市和其它任意一个城市之间都以欧氏距离 问直
11、 接相连.遗传算法TSP问题的流程图如图2-1所示.N图2-1算法流程框架图3.2算法的详细设计321解空间的表示方式遗传算法对解空间的表示大多采用二进制编码形式,但是二进制编码方式不 适合TSP问题的解的表示,因为它要求特殊的修补算子9来修复变化算子所产生的非法路径(即不可行路径).给出城市编号,用十进制数编码来表示解更合 适,例如:近邻表示、次序表示和路径表示等等 .这里米用了最简单的路径表示 法.它是最自然、最接近人类思维的表示法.因此对十大旅游城市按照珠海、西安、 杭州、拉萨、北京、丽江、昆明、成都、洛阳、威海顺序依次编号为1,2,3,4, 5, 6, 7, 8, 9,10,例如,下面
12、的路径(闭合的):5 1 24 36 7 9 8 10f表示从城市5出发,经过1, 2, 4, 3, 6, 7, 9, 8, 10最后回到城市5的一条 路径,可以自然地用一维数组来表示:(5, 1, 2, 4, 3, 6, 7, 9, 8, 10)10个旅游城市的TSP问题,如果将种群规模设为 200,则解空间就用二维数组 来表示:Path20010.322种群初始化种群的规模选择应适当,盲目的增大种群规模不能使算法得到改进,反而大大增加了计算的开销.10个城市TSP问题,可以选择小规模的种群(例如 200), 种群初始化时,先产生1, 2,,10的一条规则路径,然后在这条路径中随机 选两个数
13、,将它们交换位置,这样做若干次(本文采用 200次),保证这条路径 变成了一条随机的路径.以这条随机路径为基础,对一些随机的位,做两两交换, 这样产生了一个个体;同样地产生种群里其它的个体 .3.2.3 适应度函数适应度表明个体或解的优劣性10,不同的问题,适应度函数的定义方式也不同,本文设kj kzll川k6|l|k10为一个采用整数编码的染色体,Dkkj为城市ki到城市kj的欧氏距离,贝U该个体的适应度为11(1)fitness 二即适应度函数为恰好走遍10个城市,在回到出发城市的总距离的倒数.优化的目 标就是选择适应度函数值尽可能大的染色体,适应度函数值越大的染色体越优 质,反之越劣质.
14、求得种群中所有个体的适应值后,将适应值最大的个体保存起 来,到演化完毕时,这个个体就是最后要求的最优解 .3.2.4选择操作选择操作的目的是为了从当前群体中以一定的概率选择优良个体到新群体 中,将选择算子作用于群体,从而使优化的个体有机会直接遗传到下一代或通过 配对交叉产生新的个体再遗传到下一代; 个体被选中的概率与适应度值有关, 适 应度值越大,被选中的概率也就越大12,而适应度值越大的染色体越优质.本案 例选择轮盘赌法,即基于适应度比例的选择策略,个体 i被选中的概率为:PiFiN(2)其中,F为个体i的适应度值;N为种群个体数目325交叉操作交叉操作是遗传算法中最主要的遗传操作, 通过交
15、叉操作可以得到新一代个 体,新个体结合了其父辈个体的特性, 交叉体现了信息交换的思想.利用不同映 射杂交,确定交叉操作的父代,将父代样本两两分组,每组重复以下过程:(1)产生两个1,10区间的随机整数*和D,确定两个位置,对两个位置的中间数据进行交叉,如rr4,犷75124367981010623589417交叉为:*123589*1010*24367*1*(2)交叉后,对同一个个体中有重复的城市编号,不重复的数字保留,有冲 突的数字(带*的位置)采用部分映射的方法消除冲突,即利用中间段的对应关 系进行映射结果为:4 12358910 524367交叉是希望不同的个体在产生下一代时, 好质量的
16、下一代6 710819能够结合各自的优势基因,产生更326 变异操作变异可以看作是外界对种群的影响变异是为了引入新的因素,希望个体在 外界的作用下,能够实现自我优化,生好的基因将变异算子作用于群体即是对 群体中的个体串的某些基因位置上的基因值作变动.变异算子采用了简单的倒序变换,以10城市为例,随机的产生两个小于10的整数,对某个个体进行分割, 假设斤=4, r2=7,将分割段倒序并放回原来的位置即可,如下数组所示:5 1 2 | 4 | 3 6 | 7 | 9 8 10得到的新解为:5 1 2 | 7 | 3 6丨4 | 9 8 10由于这种变异算子仍能保持个体中的路径片段, 即倒序前后这个
17、切割段的路 径是一样的,只是两端点与整个路径的连接颠倒了,这使得变异不是漫无边际, 而是有所取舍的.这种简单反序可以保证后代仍然是一条合法途径.3.2.7进化逆转操作为了改善遗传算法的局部搜索能力,在选择、交叉、变异之后引进连续多次 的进化逆转操作,这里的“进化”是指逆转算子的单方向性 13,即只有经逆转 后,适应度值有所提高的才接受下来,否则逆转无效 产生两个1,10区间内的随机整数斤和r2,确定两个位置,将其对换位置, 例如厂4,矿刁5 1 2 | 4 | 3 6 | 7 | 9 8 10进化逆转后为:5 1 2 | 7 | 3 6丨4 | 9 8 10对每个个体进行交叉变异,然后代入适应
18、度函数进行评估, x选择出适应值 大的个体进行下一代交叉和变异以及进化逆转操作循环操作: 判断是否满足设定 的最大遗传代数MAXGEN 14,不满足则跳入适应度值计算;否则结束遗传操作.3.3实验结果分析1-10的十个数字按顺序为珠海、西安、杭州、拉萨、北京、丽江、昆明、成 都、洛阳、威海的编号.利用各城市坐标构成的10 2的矩阵及初始化随机值和 DrawPath函数画出闭合路径图,为优化前的随机路线轨迹图,如图3-1所示:边 Figure 1|c丨回 fl图3-1随机路线轨迹图图中三角标注的数字6代表起点,依次按照箭头方向遍历,最终再次回到 起点6.初始种群中的一个随机值:637 8 51
19、2 4 910 6总距离:165.2494对照1-10数字编号所代表的的城市,随机路线为:丽江一 杭州一 昆明一 成都一 北京一 珠海一 西安一 拉萨一 洛阳一 威海 丽江.29优化后的最优路线图如图3-2所示:Q Figure 3File Edit View Insert Tools Desktop Window Help | n|皱鹫紗物绘銘T0|匡i|口最优解的路径團125120J1-363423标坐O横.32624图3-2最优路线图最优解:467 1 310 59 2 84总距离:77.1532即最优路线如下所示:拉萨一 丽江一 昆明一 珠海一 杭州一 威海一 北京一 洛阳一 西安一
20、成都拉萨此遗传算法在解决TSP问题过程中的优化迭代过程如下图 3-3所示:中|回图3-3优化过程其中横坐标表示迭代次数,纵坐标为优化过程中路线长度.由该优化过程图可知,优化前后路径长度有了很大的改进,20代以后路径长度基本上已经保持 不变了,可以认为是最优解了 总距离由原来的165.2494变为77.1532,降低为 原来的46.69%,表明利用遗传算法解决TSP问题可以起到较好的作用.4基于模拟退火算法的TSP算法4.1 SA算法的实现过程4.2 算法流程图图4-1模拟退火算法求解流程框图4.3模拟退火算法的实现过程(1) 控制参数的设置需要设置的主要控制参数有降温速率 q、取初始温度To足
21、够大,令T=To,任取初始解3,确定每个T时的迭代次数,即Metropolis链长L,如图表4-1所示.表4-1参数设定降温速率q初始温度T。结束温度Tend链长L0.910000.001500(2) 初始解对于10个城市的TSP问题,得到的解为1n个排序,其中每个数字为对应城市的编号,10个城市的TSP问题1, 2, 3, 4, 5, 6,7, 8, 9,10,则|1|2|3|4|5|6|7|8|9|1就为一个合法解,采用随机排列的方法产生一个初始解S .(3) 解变换生成新解通过对当前解进行变换,产生新路径的数组即新解,这里采用的变换是产 生随机数的方法来产生将要交换的两个城市, 用二邻域
22、变换法15产生新的路径, 即新的可行解S2.例如n=10时,产生两个1,10范围内的随机整数ri和2确定 两个位置,将其对换位置,如11=4, 2=7512 | 4 |36 | 7 | 9810得到的新解为:512 | 7 |36 | 4 | 9810(4) Metropolis 准则若路径长度函数为f(S),则当前解的路径为f(SJ,新解的路径为f(S2),路径差为 df = f (S,)- f (E) 16,则 Metropolis 准则为17:1P 二 / df、( 3)exp(-)若df ::: 0,则接受S2作为新的当前解,即3 =S2 ;否则计算S2的接受概率 exp(-df/T)
23、,即随机产生的(0,1)区间上均匀分布的随机数rand,若exp(-df /T rand 18,也接受S作为新的当前解,S =S2 ;否则保留当前解S -(5) 降温利用降温速率q进行降温,即T=qT,则T小于结束温度,则停止迭代输出 当前解S,为最优解,结束程序,否则按衰减函数衰减T后逐渐降低控制温度,重 复Metropolis过程,继续迭代,直至满足结束准则,求出最优解.4.4实验结果利用各城市坐标构成的10 2的矩阵及初始化随机值和DrawPath函数分别画出优化前的随机路径轨迹图与优化后的最优闭合路径图,以及优化过程 图并利用计时器记录了运行结果所花费的时间.为优化前的随机路线轨迹图,
24、如图4-2所示.Q Fig听 1File Edit View Insert Tools Desktop Window Help0日日 b 聘摇屈 s a图4-2随机路线轨迹图初始种群中的一个随机值:81 7 4 36 10 2 9 5 8总距离:149.0742优化后的最优路线轨迹图如图4-3所示.图4-3最优路线轨迹图最优解:928 4 67 13 10 5 9总距离:77.1532即最优路线如下所示:洛阳一 西安一 成都一 拉萨一 丽江一 昆明一 珠海一 杭州一 威海一 北京 洛阳本次运行的时间如下所示:Elapsed time is 12.232553 sec on ds.优化过程如图4
25、-4所示:图4-4优化过程由图4-4可以看出,优化前后的路径长度得到很大的改进,由优化前的149.0742变为77.1532,变为原来的51.75%, 50代以后路径长度基本上已经保持 不变了,可以认为是最优解了 .5对两种算法的评价 5.1遗传算法优缺点遗传算法优点:(1)对可行解表示的广泛性;(2)群体搜索特性;(3)不需要辅助信息;(4)内在启发式随机搜索特性;(5)遗传算法在搜索过程中不容易陷入局部最优,即使在所定义的适应度函数 是不连续的,非规则的或有噪音的情况下,也能以很大的概率找到全局最优解;(6)遗传算法具有固有的并行性和并行计算能力;(7)遗传算法具有可扩展性,易于同别的技术
26、混合遗传算法缺点:(1)编码不规则或编码存在表示的不规则性;(2)单一的遗传算法编码不能全面的将优化问题的约束表示出来;(3)遗传算法通常的效率比比其他传统的优化方法低;(4)遗传算法容易出现过早收敛;(5)遗传算法对算法的精度,可信度,计算复杂性等方面,还没有有效的定量 分析方法5.2 模拟退火算法的优缺点模拟退火法优点:(1)它能够处理具有任意程度的非线性、不连续性、随机性的目标函数;(2)目标函数可以具有任意的边界条件和约束;(3)比其他线性优化方法, SA 的编程工作量小,且易于实现;(4)统计上可以保证找到全局最优解模拟退火算法缺点:(1)找到最优解需要耗费非常多的时间;(2)相对于
27、其他一些技术对某一个具体问题的求解需要更困难的参数调整;(3)使用不当致使降温过快,导致模拟退火变为了模拟淬火(SQ),而SQ是无 法从统计学上保证找到最优解的6 结语遗传算法利用自然界的“物竞天择、适者生存”的演化法则,把问题参数编 码为染色体, 再利用迭代的方式进行选择、 交叉以及变异等运算来交换种群中染 色体的信息,最终生成符合优化目标的染色体 .实践证明, 遗传算法在搜索优秀 解的过程中模拟生物遗传, 实现优中选优的过程, 在解空间中快速收敛到优秀解 . 遗传算法对于解决 TSP 问题等组合优化问题具有较好的寻优性能 .模拟退火算法 是利用自适应启发式概率性搜索的算法, 可以用以求解不
28、同的非线性问题, 对不 可微甚至不连续的函数优化, 能以较大的概率求得全局最优解, 并且能处理不同 类型的优化设计变量(离散的,连续的,混合型的) ,不需要任何的辅助信息, 对目标函数和约束函数没有任何要求 利用 Metropolis 算法适当地控制温度的下 降过程,在优化问题中具有很强的竞争力,但是其优化过程效率略低于遗传算 法因此,解空间较小的情况下,遗传算法与模拟退火算法均可采用,但是解空 间较大时,考虑结果运行时间,应采用遗传算法参考文献 1毕晓君. 信息智能处理技术 M. 北京: 电子工业出版社 . 2010.2储理才.基于MATLAB的遗传算法程序设计及TSP问题求解J.集美大学学
29、 报:2001,6(01):14-19 3代桂平,王勇,侯亚荣 . 基于遗传算法的 TSP 问题求解算法及其系统 J. 微 计算机信息, 2010( 04):15-16,19 4 Negnevistsky,M . 顾力栩,沈晋惠译 . 人工智能智能系统指南 M. 北京 : 机械工业出版社 . 2010.5 任春玉.基于混合遗传算法的 TSP问题优化研究J.哈尔滨商业大学学 报.2007. 6 Michalewicz Z. Genetic Algorithms +Data Structure=Evolution Programs. Springer-Verlag, Berlin. 20117 易
30、敬, 王平, 李哲. 基于遗传算法的 TSP 问题研究 J. 信息技术, 2006, 30(7): 110-112.8 邓辉文.离散数学M.北京:清华大学出版社.2006. 9刘雁兵,刘付显 . 基于遗传算法的 TSP 问题求解与仿真 J. 电光与控 制.2007. 10 张春霞,王蕊 . 基于遗传算法求解 TSP 问题的算法设计 J. 安阳工学院学 报.2007.11郑阿奇.MATLAB实用教程M .北京:电子工业出版社.2004. 12李飞,白艳萍 .用遗传算法求解旅行商问题 J. 中北大学学报 .2007.13 翟梅梅.基于交叉算子改进的遗传算法求解TSP问题J.淮南师范学院学报.200
31、9.14 Merz P.A comparison of recombination operators forthe traveling salesman problemA.Proceedings of the Genetic and Evolutionary Conference.200715 周涛. 基于改进遗传算法的 TSP 问题研究 J. 微电子学与计算机, 2006, 23(10): 104-107. 16 Jung S, Moon B R. Toward Minimal Restriction of Genetic En coding and Crossovers for the
32、Two-Dimensional Euclidean TSP J.IEEE Transactions onEvolutionary Computation, 2011, 6 ( 12) :557565 17 Tsai Cheng-Fa , Tsai Chun-Wei , Yang Tzer . A Modified Mul tiple-Searching Method to Genetic Algorithms for Solving Travel ing Salesman ProblemJ.IEEE Transactions on Systems,Man and Cybernetics , 2
33、011 ,3 (10) :612 18 Write A H. Genetic Algorithms for Real Parameter Optimization. FoundationofGeneticAlgorithms.Sanmateo,GA.2010:205-218附录: 遗传算法的TSP方法代码:1 种群初始化函数 InitPop 的代码:% 初始化种群%输入:% NIND :种群大小% N : 个体染色体长度(这里为城市的个数)%输出:%初始种群function Chrom=InitPop(NIND,N)Chrom=zeros(NIND,N);% 用于存储种群 for i=1:NI
34、NDChrom(i,:)=randperm(N);% 随机生成初始种群 end2 种群个体的适应度函数 Fitness 的代码 :% 适配值函数%输入:%个体的长度( TSP 的距离)%输出:%个体的适应度值function FitnV=Fitness(len)FitnV=1./len;3 选择操作函数的 Select 的代码:% 选择操作%输入%Chrom 种群%FitnV 适应度值%GGAP代沟%输出%SelCh 被选择的个体function SelCh=Select(Chrom,FitnV,GGAP) NIND=size(Chrom,1);NSel=max(floor(NIND*GGAP
35、+.5),2);ChrIx=Sus(FitnV,NSel);SelCh=Chrom(ChrIx,:);其中,函数 Sus 的代码为 :% 输入 :%FitnV 个体的适应度值%Nsel 被选择个体的数目% 输出 :%NewChrIx 被选择个体的索引号 function NewChrIx = Sus(FitnV,Nsel) Nind,ans = size(FitnV); cumfit = cumsum(FitnV);trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1); Mf = cumfit(:, ones(1, Nsel);Mt = trial
36、s(:, ones(1, Nind);NewChrIx, ans = find(Mt Mf & zeros(1, Nsel); Mf(1:Nind-1, :) =rand % 交叉概率 Pc SelCh(i,:),SelCh(i+1,:)=intercross(SelCh(i,:),SelCh(i+1,:);endend%输入:%a 和 b 为两个待交叉的个体%输出:%a 和 b 为交叉后得到的两个个体其中 intercross 函数代码:function a,b=intercross(a,b)L=length(a); r1=randsrc(1,1,1:L); r2=randsrc(1,1,1
37、:L);if r1=r2a0=a;b0=b;s=min(r1,r2); e=max(r1,r2);for i=s:ea1=a;b1=b;a(i)=b0(i);b(i)=a0(i);x=find(a=a(i);y=find(b=b(i); i1=x(x=i); i2=y(y=i);if isempty(i1) a(i1)=a1(i);endif isempty(i2) b(i2)=b1(i);endendend5 变异操作函数 Mutate 的代码:% 变异操作%输入: %SelCh 被选择的个体 %Pm 变异概率%输出:% SelCh 变异后的个体 function SelCh=Mutate(
38、SelCh,Pm) NSel,L=size(SelCh);for i=1:NSel if Pm=rand R=randperm(L); SelCh(i,R(1:2)=SelCh(i,R(2:-1:1);endend6 进化逆转操作函数 Reverse 代码:% 进化逆转函数%输入 %SelCh 被选择的个体 %D 个城市的距离矩阵%输出%SelCh 进化逆转后的个体 function SelCh=Reverse(SelCh,D) row,col=size(SelCh);ObjV=PathLength(D,SelCh); % 计算路径长度 SelCh1=SelCh;for i=1:rowr1=r
39、andsrc(1,1,1:col);r2=randsrc(1,1,1:col); mininverse=min(r1 r2); maxinverse=max(r1 r2);SelCh1(i,mininverse:maxinverse)=SelCh1(i,maxinverse:-1:mininverse); endObjV1=PathLength(D,SelCh1); %计算路径长度index=ObjV1ObjV;SelCh(index,:)=SelCh1(index,:);DrawPath 的代码:一个随机解 ( 个体 )7 画出所给路线的轨迹图函数% 画路径函数%输入% Chrom 待画路径
40、% X 各城市坐标位置 function DrawPath(Chrom,X) R=Chrom(1,:) Chrom(1,1); % figure;hold on plot(X(:,1),X(:,2),o,color,0.5,0.5,0.5)plot(X(Chrom(1,1),1),X(Chrom(1,1),2),rv,MarkerSize,20) for i=1:size(X,1)text(X(i,1)+0.05,X(i,2)+0.05,num2str(i),color,1,0,0); endA=X(R,:);row=size(A,1);for i=2:row坐标转换arrowx,arrowy
41、 = dsxy2figxy(gca,A(i-1:i,1),A(i-1:i,2);% annotation(textarrow,arrowx,arrowy,HeadWidth,8,color,0,0,1);endhold offxlabel(横坐标 )ylabel(纵坐标 )title( 轨迹图 )box on8 遗传算法的主函数代码:%遗传算法求解 TSP 问题 ( 为选择操作从新设计后程序 )%输入:%D距离矩阵%NIND 为种群个数%X参数是中国 10 个城市的坐标 ( 初始给定 )%MAXGEN 为停止代数, 遗传到第 MAXGEN 代时程序停止 ,MAXGEN 的具体取值视问题的规模和
42、耗费的时间而定%m 为适值淘汰加速指数 , 最好取为 1,2,3,4, 不宜太大%Pc交叉概率%Pm变异概率%输出:%R为最短路径%Rlength为路径长度clearclcclose allX=22.31113.5834.37108.9530.29120.1629.6691.1439.95116.4126.86100.2324.89102.8330.59104.0734.65112.4637.53122.13;D=Distanse(X); %生成距离矩阵N=size(D,1); %城市个数% 遗传参数NIND=100; %种群大小MAXGEN=200; %最大遗传代数Pc=0.9; %交叉概率
43、Pm=0.05; %变异概率GGAP=0.9; %代沟% 初始化种群Chrom=InitPop(NIND,N);% 画出随机解的路径图DrawPath(Chrom(1,:),X)titlepause(0.0001)% 输出随机解的路径和总距离 disp( 初始种群中的一个随机值 :) OutputPath(Chrom(1,:);Rlength=PathLength(D,Chrom(1,:); disp( 总距离: ,num2str(Rlength); disp( )% 优化gen=0;figure;hold on;box on xlim(0,MAXGEN) title( 优化过程 ) xlab
44、el(代数 )ylabel(最优值 )ObjV=PathLength(D,Chrom); % 计算路径长度 preObjV=min(ObjV);while gen,num2str(R(i);enddisp(p)计算个体路线长度函数 PathLength 代码:% 计算各个体的路径长度% 输入:% D 两两城市之间的距离% Chrom 个体的轨迹function len=PathLength(D,Chrom) row,col=size(D);NIND=size(Chrom,1); len=zeros(NIND,1);for i=1:NINDp=Chrom(i,:) Chrom(i,1);i1=p
45、(1:end-1);i2=p(2:end); len(i,1)=sum(D(i1-1)*col+i2);end重插入子代得到新种群的函数 Reins 代码:% 重插入子代的新种群% 输入:%Chrom 父代的种群%SelCh 子代种群%ObjV 父代适应度% 输出% Chrom 组合父代与子代后得到的新种群 function Chrom=Reins(Chrom,SelCh,ObjV) NIND=size(Chrom,1);NSel=size(SelCh,1);TobjV,index=sort(ObjV); Chrom=Chrom(index(1:NIND-NSel),:);SelCh;模拟退火
46、算法的TS方法代码:生成新解:function S2=NewAnswer(S1)% 输入% S1: 当前解% 输出% S2 :新解N=length(S1);S2=S1;a=round(rand(1,2)*(N-1)+1);W=S2(a(1);S2(a(1)=S2(a(2);S2(a(2)=W;Metropolis准则函数function S,R=Metropolis(S1,S2,D,T)% 输入% S1 :当前解% S2:新解% D:距离矩阵(两两城市的之间的距离)% T:当前温度% 输出% S:下一个当前解% R:下一个当前解的路线距离%R1=PathLength(D,S1); % 计算路线
47、长度N=length(S1); %得到城市的个数R2=PathLength(D,S2); % 计算路线长度 dC=R2-R1; % 计算能力之差 if dC=rand %以 exp(-dC/T) 概率接受新路线S=S2;R=R2;else % 不接受新路线S=S1;R=R1;Endfunction varargout = dsxy2figxy(varargin)if length(varargin1) = 1 & ishandle(varargin1) .& strcmp(get(varargin1,type),axes)hAx = varargin1;varargin = varargin(2:end);elsehAx = gca;end;if length(varargin) = 1pos = varargin1;elsex,y = deal(varargin:);endaxun = get(hAx,Units); set(hAx,Units,normalized); axpos = get(hAx,Position);axlim = axis(hAx); axwidth = diff(axlim(1:2); axheight = diff(axlim(3:4);if exist(x,var)varargout1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权许可合同:关于音乐作品版权授予使用协议
- 2024年度广告合同:品牌宣传与广告投放协议2篇
- 2024中国石化茂名石化分公司毕业生招聘42人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信青海海南分公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信招聘会易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国少年儿童新闻出版总社限公司招聘应届毕业生15人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上半年江苏无锡市市属国企业招考管理人员80人易考易错模拟试题(共500题)试卷后附参考答案
- 销售培训系列课程模板课件
- 2024年度版权质押融资合同质押解除条件与贷款用途
- 2024年度农产品有机认证合同
- 2024年教育培训机构线上课程合作协议
- 第一例应用ECMO患者护理查房
- 基于区块链技术的农产品追溯与智能化管理方案
- 环保设备售后服务体系建设方案
- 第四单元(学习任务单)七年级语文上册大单元教学名师备课系列(统编版2024)
- 浙江省杭州市2024-2025学年高一上学期期中考试语文试卷(含答案)
- 湖南财政经济学院《体育保健学(运动伤害急救与防护)》2022-2023学年第一学期期末试卷
- 带您走进西藏学习通超星期末考试答案章节答案2024年
- 第6课 三国两晋南北朝政权更迭与民族交融(课件)-【中职专用】《中国历史》魅力课堂教学三件套(高教版2023•基础模块)
- 广东省深圳市五年级上学期科学期中试卷三(含答案)
- 中医医院绩效考核细则及评分办法(中医药工作)
评论
0/150
提交评论