栅栏效应讲解_第1页
栅栏效应讲解_第2页
栅栏效应讲解_第3页
栅栏效应讲解_第4页
栅栏效应讲解_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、霾山丈禽 课程设计说明书 题目:DFT栅栏效应分析 学院(系):电气工程学院 年级专业: 学 号: 学生姓名: 指导教师: 教师职称: 电气工程学院课程设计任务书 课程名称:数?仁乃处理课仪段汁 基层教学单位:指导教师: 学号 学生姓名 (专业)班级 设计题目 4、DFT柵栏效应分析 设 计 技 术 参 数 信号包含三种频率成分,分别为20Hz、20.5Hz、40Hz,采样频率100Hz 设 计 要 求 (1) 在记录中最少点数 (2) 求 x (n)的 128 点 DFT 的 X (k) (3) 将上述x (n)补零到512后求DFT的X (k) (4) 求 x (n)的 512 点 DFT

2、 的 X (k) 编写并运行程序,并分析运行结果 参 考 资 料 数字信号处理方而资料 MATLAB方而资料 周次 前半周 后半周 应 完 成 内 容 收集消化资料、学习MATLAB软件,进 行相关参数计算 编写仿真程序、调试 指导教 师签字 基层教学单位 主任签字 说明:1.此表一式四份,系、抬导教师.学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设讣报告前面。 电气匸程学院教务科 目录 扌商要一4一 1.设计任务及分析-5- 1.1设计技术参数:-5- 1.2设计要求:-5- 13设计分析:-5- 2原理分析-6- 2. 1栅栏效应-6- 2. 1. 1栅栏效应的定义-6

3、- 2. 1.2栅栏效应的成因以及危害-6- 2. 1.3降低栅栏效应的方法-7- 2.2频率分辨率-7- 3. MATLAB 编程-8- 3. 1 MATLAB 软件简介-8- 3. 2信号分析常用指令表-8- 3. 3程序清单-9- 3.4仿真结果分析-12- 4. 4得体会一15一 5. 参考文献一16一 -3- 摘要 在数字信号处理中,有限长序列占有很重要的地位,其频域分 析方法既有Z变换也有序列的傅里叶变换,但ZT与DTFT的共同特点 是:频域变换函数X(Z)和X(e3t)是连续函数,不适于计算机或数字 处理。因此,本文将介绍一种更为重要的数学变换D离散傅里叶 变换(简称DFT),其

4、实质是有限长序列傅里叶变换的有限点离散采 样,从而开辟了频域离散化的道路,使数字信号处理可以在频域采 用数字运算的方法进行,从而大大增加了数字信号处理的灵活性, 同时也奠定了 DFT在在信号处理中的核心地位。 DFT是在时域和频域上均已离散的变换,适合数值运算且有快速 算法,因而成为分析离散信号和系统的有力工具。 本文介绍了利用DFT分析信号频谱的流程,重点阐述了频谱分析 过程中误差形成的原因及减小分析误差的主要措施。列举了MATLAB 环境下频谱分析的实现程序。通过与理论分析的对比,解释了利用 DFT分析信号频谱时存在的栅栏效应,并提出了相应的改进方法。 关键字:离散傅里叶变换(DFT)、栅

5、栏效应、频谱特性、改进方法 1 设计任务及分析 1.1设计技术参数: 信号包含三种频率成分,分别为20H乙20.5HZ, 40HZ,采样频率 lOOHZo 1.2设计要求: (1) 在记录中最少点数。 (2) 求 x (n)的 128 点 DFT 的 X (k)。 (3) 将上述x (n)补零到512后求DFT的X (k)。 (4) 求 x (n)的 512 点 DFT 的 X (k)。 编写并运行程序,并分析运行结果。 1.3设计分析: 由于N=Fs/ (20. 5-20) =200,可求出最少记录点数为200。因 此当频域采样点数N=200时,不出现栅栏效应;而当N200时,会 有栅栏效应

6、误差出现。 为了更好的分析DFT栅栏效应,DFT分三种情况:在128点有 效数据不补零情况下的分辨率;在128点有效数据且补零至512点 情况下分辨率;在512点有效数据下分辨率。然后比较三次仿真结 果的异同,进而对其进行比较分析。 2原理分析 2.1栅栏效应 2.1.1栅栏效应的定义 由于耳为非周期的连续信号,它的频谱是连续的,但将暫 采样,截断然后进行DFT分析时,得到的仅仅是连续信号频谱上的 有限个点,而有一部分频谱分量将被挡住,好像是通过栅栏观察频 谱,这种现象称为栅栏效应。 不管是时域采样还是频域采样,都有相应的栅栏效应。只是当 时域采样满足采样定理时,栅栏效应不会有什么影响。而频域

7、采样 的栅栏效应则影响很大,“挡住”或丢失的频率成分有可能是重要的 或具有特征的成分,使信号处理失去意义。减小栅栏效应可用提高 采样间隔也就是频率分辨力的方法来解决。间隔小,频率分辨力 高,被“挡住”或丢失的频率成分就会越少。但会增加采样点数, 使计算工作量增加。 2.1.2栅栏效应的成因以及危害 栅栏效应是制约频谱分析谐波分析精度的一个瓶颈。栅栏效应 在非同步采样的时候,影响尤为严重。在非同步采样时,由于各次 谐波分量并未能正好落在频率分辨点上,而是落在两个频率分辨点 之间。这样通过FFT不能直接得到各次谐波分量的准确值,而只能 以临近的频率分辨点的值来近似代替,这就是栅栏效应降低频谱分 析

8、精度的原因。 2.1.3降低栅栏效应的方法 根据前面分辨率的讨论,减小栅栏效应可用提高采样间隔也就 是频率分辨力的方法来解决。间隔小,频率分辨力高,被“挡住” 或丢失的频率成分就会越少。 针对于有限长序列,为了克服栅栏效应,即检测出被遮挡的频 率分量,可以通过对序列尾部补零的方式进行。这相当于栅栏效应 的缝隙间隔缩短了,因此栅栏效应有所改善。 对无限长序列,可以增加取样点数,即增加数据的有效长度来 提高分辨率来降低栅栏效应的影响。 2.2频率分辨率 根据公式: F= AC =厶=? = 2 疋Z NT Tp(2t) 其中,数据时间长度Tp、时域采样频率fs、时域采样间隔T、 频域采样点数N、频

9、域采样间隔AF。 F越小,说明分辨率越高,AF仅与信号的实际长度成反比, 信号持续时间越长,频率分辨率越高。 由式(2-1)可知,增加采样点数,增加了输入序列的阶次,延 长信号长度均可使频率间隔变小。 3.MATLAB 编程 3.1 MATLAB软件简介 MATLAB是美国Mathworks公司推出的数学工具软件,它是一 种直观、高效的计算机语言,同时又是一个科学计算平台。它为数 据分析和数据可视化、算法提供了最核心的数学和高级图形工具。 多达几百个数学函数和工程函数,极大地降低了对使用者的数学基 础和计算机语言知识的要求,编程效率和计算效率极高。目前, MATLAB已经成为国际上最流行的科学

10、与工程计算软件工具。 MATLAB集科学计算、图像处理、声音处理于一身,是一个高度 的集成系统,有良好的用户界面,并有良好的帮助功能。MATLAB不 仅流行于控制界,在机械工程、生物工程、语音处理、图像处理、 信号分析、计算机技术等各行各业中都有极广泛的应用。 3.2信号分析常用指令表 命令 含义 fft(X) 计算M点的DFT, M是序列x的长度 fft(x, n) 计算N点的DFT,若MN,则将原序列截短为 N序列,再计算其点的DFT;若MN,则将原序 列补零至N点,然后计算其N点DFT。 Abs 对其后边的量取绝对值 Figure 给图命名 Subplot 分区绘制图形 Plot 以默认

11、格式绘制图形 Label 为坐标轴命名 Zeros 产生元素全为零的数组 Max 取最大值 zeros 建立一个全0矩阵等间隔向量 3.3程序清单 Nl=128;%信号长度128点N1 N2=512;%信号长度512点N2 nl=l:Nl;% 时间车b 1 n2=l:N2;%时间轴 2 fl=20;%信号频率 2=20.5;%信号频率 f3=40; %信号频率 fs=100;%采样频率 xnl=sin(2*pi*fl*nl/fs)+sin(2*pi*f2*nl/fs)+sin(2*pi*f3*nl/fs); % 三个 正弦信号叠加 在128点有效数据不补零情况下的分辨率: yl=fft(xii

12、l,Nl);%128 点 DFT kl=nl*fs/128;% 频率轴 Yl=abs (yl)/max (abs(yl);%幅度归一化 figure(l); subplot (2,1,1);%将图像分为2行1列,将图像画在第1块 plot(nl,xiil/max (xiil); -9- xlabelC 时间); ylabel(幅度谱); subplot(2,l,2); plot(kl,Yl); axis(15 50 0 1);% 设置坐标 xlabel(濒率 HZ); ylabelC幅度谱); %在128点有效数据且补零至512点情况下分辨率: y2=ffi(xiil,N2); k2=n2*f

13、s/N2; Y2=abs(y2)/max(abs(y2); %幅度归一化 figure(2); subplot(2,l ,1); xn2=xnl zeros(l,N2-Nl); plot(ii2,xii2/max(xii2); xlabelC 时间); ylabelC幅度谱); subplot(2,l,2); plot(k2,Y2); axis(15 50 0 1); xlabel(*频率(HZ) *); ylabel(幅度谱); %在512点有效数据下分辨率 xn3=sin(2*pi*fl*n2/fs)+sin(2*pi*2*n2/fs)+sm(2*pi*f3*n2/fs); y3=fft(

14、xii3,N2); k3=n2*fs/N2; Y 3=abs(y3 )/max(abs(y3); figure(3); subplot(2,l,l); plot(ii2,xii3/max(xii3); xlabelf 时间); ylabelC幅度谱); subplot(2,l,2); plot(k3,Y3), axis(15 50 0 1); xlabelf频率(HZ) *); ylabel(幅度谱); -ii - 3.4仿真结果分析 将程序输入MATLAB后,共出现三个图,分析如下: 通过观察图1可以看出,在128点有效数据不补零的情况下进行 快速傅里叶变化,只有20. 5HZ和40HZ的频

15、率时有幅度值,而20HZ 时却没有出现幅度值,所以出现了栅栏效应。 图1未补零序列及其128点DFT结果图 通过观察图2可以看出,在128点有效数据且补零至512点的情 况下进行快速傅里叶变化,图2相对于图1得到了高密度的频谱采 样,却没有得到频谱的更多详细深层的信息,并且频率为20Hz时的 幅度值仍没有显示,栅栏效应依旧存在着。 图2补零后的序列及其512点DFT结果图 通过观察图3可以看出,在512点有效数据的情况下进行快速 傅里叶变化,频率分别为20HZ、20. 5HZ和40HZ的幅度值都能显示 出来,从而有效的消除了栅栏效应。 图3未补零序列及其512点DFT结果图 通过对上面三幅图的

16、仿真结果的分析可知,采用对序列补零的方 法,可得到对X()采样更密集的采样值,即得到该密度的频谱采样, 但是并没有得到频谱的更多详细深层的信息。所说的分辨率是视在分 辨率,通过补零得到的频谱图是高密度谱。序列补零能够提高视在分 辨率,细化频谱,得到高密度谱,在一定程度上克服了栅栏效应。 然而,增加采样点数可以提高物理分辨率,彻底消除栅栏效应。 -13- 4 心得体会 经过一周的数字信号处理课程设计,感触很深。以前学习的理 论知识得到了实践应用,从刚开始拿到题目时的无从下手,经过查 阅资料,上网查询,学习使用MATLAB编程,逐渐将课程设计与之前 学过的相关內容联系起来,是一次很有意义的实践。

17、然而,课程设计并不是一帆风顺的,在真正进入程序的编程阶 段,才发现有很多错误,经过不断改进,最终在MATLAB上仿真,得 出图像。让我明白细节决定成败,任何一处小的错误都可能导致结 果的错误与失败。 在设计过程中,通过查阅有关MATLAB和数字信号的资料。与同 学讨论和祥和学习,并向老师请教等方式,是自己学到了很多知 识,虽然经历了一些困难,但是收荻同样巨大。在整个设计中我明 白了很多东西,也培养了我独立工作的能力,树立了对自己的信 心,相信对今后的工作学习很由很大的帮助。 15- 5.参考文献 1. 数字信号处理及应用谢平 王娜 林洪彬编著机械工业出版社 2. MATLAB在数字信号处理中应用薛年喜编著 清华大学出版社 3. 应用MATLAB实现信号分析和处理张明照编著 科学出版社 4. 信号系统与信号处

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论