版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 1、在、在0 0360360范围内,找出与范围内,找出与600600 角终边相同的角,并判定它是第几象限角角终边相同的角,并判定它是第几象限角. . 600600= =120120360360x 2x 2 第二象限角第二象限角. . 2 2、写出与、写出与600600角终边相同的角的集合角终边相同的角的集合 s s,并把并把集合集合s s中适合不等式中适合不等式- -72720 0 720720的元素的元素写出来写出来. . 在平面几何中研究角的度量,当在平面几何中研究角的度量,当 时是用度做单位来度量角,时是用度做单位来度量角, 的角是的角是 如何定义的?如何定义的? 1 o 1的角的角
2、 角度制角度制 我们把用度做单位来度量角的制度叫做角我们把用度做单位来度量角的制度叫做角 度制,在数学和其他许多科学研究中还要经常度制,在数学和其他许多科学研究中还要经常 用到一种度量角的制度用到一种度量角的制度 弧度制弧度制,它是如何定义呢?,它是如何定义呢? 在角度制下,当把两个带着度、分、在角度制下,当把两个带着度、分、 秒各单位的角相加、相减时,由于运算进率秒各单位的角相加、相减时,由于运算进率 非十进制,总给我们带来不少困难那么我非十进制,总给我们带来不少困难那么我 们能否重新选择角单位,使在该单位制下两们能否重新选择角单位,使在该单位制下两 角的加、减运算与常规的十进制加减法一样角
3、的加、减运算与常规的十进制加减法一样 去做呢?去做呢? 弧度制弧度制 : 单位符号单位符号 :rad读作读作弧度弧度 定义:定义: 我们把长度等于我们把长度等于半径长半径长的弧所对的的弧所对的 圆心角圆心角叫做叫做1弧度的角弧度的角,即用弧度制度量时,即用弧度制度量时, 这样的圆心角等于这样的圆心角等于1rad。 aob=1rad o a b rad1 o l =r r o a c rad2 o r rl2 = = aoc=2rad (1)正角的弧度数是正数,负角的弧度数是负数,正角的弧度数是正数,负角的弧度数是负数, 零角的弧度数是零角的弧度数是0 (2)角角 的弧度数的绝对值的弧度数的绝对
4、值 )(为半径为弧长 rl r l = ( (4)用角度制和弧度制来度量零角,单位不同,用角度制和弧度制来度量零角,单位不同, 但量数相同(都是但量数相同(都是0) (5)用角度制和弧度制来度量任一非零角,用角度制和弧度制来度量任一非零角, 单位不同,量数也不同单位不同,量数也不同。 (3)以弧度作为单位来度量角的单位制,叫做以弧度作为单位来度量角的单位制,叫做 弧度制弧度制 把角度换成弧度把角度换成弧度 rad2360= rad180 = = radrad01745.0 180 1= 把弧度换成角度把弧度换成角度 185730.57 180 1 = = rad 角度与弧度间的换算角度与弧度间
5、的换算 正角 零角 负角 正实数 负实数 0 任意角的集合r实数集 注意几点:注意几点: 1今后在具体运算时,今后在具体运算时,“弧度弧度”二字和二字和 单位符号单位符号“rad”可以省略可以省略 如:如:3表示表示 3rad , sin 表示表示 rad角的正弦角的正弦 2一些特殊角的度数与弧度数的对应值应一些特殊角的度数与弧度数的对应值应 该记住(见课本该记住(见课本p8表)表) 3应确立如下的概念:角的概念推广之后,应确立如下的概念:角的概念推广之后, 无论用角度制还是弧度制都能在角的集合无论用角度制还是弧度制都能在角的集合 与实数的集合之间建立一种一一对应的关系。与实数的集合之间建立一
6、种一一对应的关系。 例例1把下列各角化为弧度把下列各角化为弧度 (1)30(2)5(3)-45 角度制与弧度制互化时要抓住角度制与弧度制互化时要抓住 弧度弧度 这个关键这个关键 = 180 例例2把下列把下列 各角化为度:各角化为度: rad 6 5 ) 1 ( )精确到1 . 0(2)2(rad 弧度 360 270 180 90 60 45 30 度 练习:填表练习:填表 6 4 3 2 3 2 2 15 45 75 135300 6 0弧度 60 30 0 度 270 90 度 弧度 5 12 12 4 3 4 5 3 3 2 3 2 弧度制是以弧度制是以“弧度弧度”为单位度量角的制度,
7、角度制为单位度量角的制度,角度制 是以是以“度度”为单位度量角的制度;为单位度量角的制度; 的大小,而是圆的所对的圆心角(或该弧)的大小,而是圆的所对的圆心角(或该弧) 1 360 1 1弧度是等于半径长的圆弧所对的圆心角(或该弧)弧度是等于半径长的圆弧所对的圆心角(或该弧) 的大小;的大小; 不论是以不论是以“弧度弧度”还是以还是以“度度”为单位的角的大小都是为单位的角的大小都是 一一 个与半径大小无关的定值个与半径大小无关的定值 终边相同的角终边相同的角 (1)用角度表示)用角度表示 (2)用弧度表示)用弧度表示 zkks=,2| 与与 终边相同的角可以表示为:终边相同的角可以表示为: z
8、kk,360 zkk,2 它们构成一个集合:它们构成一个集合: zkks=,360| 与与 终边相同的角可以表示为:终边相同的角可以表示为: 它们构成一个集合:它们构成一个集合: 把下列各角化成把下列各角化成 的形式:的形式: kk,202 (1);();(2);();(3) 3 16 315 7 11 已知扇形已知扇形oaboab的中心角为的中心角为4 4,其面积,其面积 2cm2cm2 2,求扇形的周长和弦,求扇形的周长和弦abab的长。的长。 弧长公式弧长公式 1、角度制下的弧长公式 角度制下的扇形面积公式 2、弧度制下的弧长公式 弧度制制下的扇形面积公式 180 rn l = = 36
9、0 rn s 2 = = 扇扇 rl = = 2 r| 2 1 lr 2 1 s = = = 扇扇 例例4求图中公路弯道处弧的长求图中公路弯道处弧的长 (精确到,图中长度单位:(精确到,图中长度单位: ) l m1 m 例例5 5 已知扇形的周长为10cm, 面积为4cm2,求扇形的圆心角. 解: 设扇形的圆心角的弧度数为 , 弧长为l, 半径为r, (02 ) 分析:要求圆心角,根据公式 ,需求弧长l及半径r.| l r = 根据题意: 210 lr= 1 4 2 lr = 由得 ,102lr= 代入得 2 540rr= 12 解得 r =1,r =4 当r=1时,l=8cm时,82 l r
10、 = 当r=4时,l=2cm时, 1 2 l r = 舍去 所求扇形的圆心角的弧度数为 1 2 1 1、已知扇形周长为、已知扇形周长为6cm6cm,面积为,面积为2cm2cm2 2,则扇形,则扇形 圆心角的弧度数为圆心角的弧度数为 a a、1 b1 b、4 c4 c、1 1或或4 d4 d、2 2或或4 4 c 2 2、当圆心角、当圆心角=-216=-216o o,弧长,弧长l l =7cm=7cm时,其半径时,其半径 r=_r=_ 35 cm 6 3 3、在半径为、在半径为 的圆中,圆心角为周角的的圆中,圆心角为周角的 的角的角 所对圆弧的长为所对圆弧的长为_ 30 2 3 40 4 4、若、若2 rad2 rad的圆心角所对的弧长是的圆心角所对的弧长是4cm4cm,则这个,则这个 圆心角所在扇形的面积为圆心角所在扇形的面积为_ 4cm2 8.8.已知扇形的周长为已知扇形的周长为20 cm20 cm,当扇形的中心角,当扇形的中心角 为多大时,它有最大面积,最大面积是多少为多大时,它有最大面积,最大面积是多少? ? 练习7:当扇形的中心角为600,半径为10cm, 求扇形的弧长及该弧所在的弓
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土壤污染生物修复技术洞察报告-洞察分析
- 云端程序监控平台-洞察分析
- 物联网数据流处理技术-洞察分析
- 人力资源管理咨询项目建议书课件
- 《基础工程复习要点》课件
- 《有机化合物的起始》课件
- 企业培训中的实验教学策略探讨
- 初创企业战略规划的实践与思考
- 冰雪运动与现代科技结合的创新实践
- 办公环境下的安全生产标准化培训策略
- 2023年中证数据招聘笔试真题
- 2024年农村公寓房屋买卖协议书参考样本3篇
- 木桶效应-课件
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 初中济南版生物实验报告单
- 北京邮电大学《自然语言处理》2023-2024学年第一学期期末试卷
- (DB45T 2522-2022)《桥梁缆索吊装系统技术规程》
- 2024年广西安全员A证考试题及答案
- 2024年全国《考评员》专业技能鉴定考试题库与答案
- 道法全册知识点梳理-2024-2025学年统编版道德与法治七年级上册
- 四川省成都市2023-2024学年高二上学期期末考试+地理 含答案
评论
0/150
提交评论