指数、对数比较大小练习题(1+2+3+8=250)[骄阳学堂]_第1页
指数、对数比较大小练习题(1+2+3+8=250)[骄阳学堂]_第2页
指数、对数比较大小练习题(1+2+3+8=250)[骄阳学堂]_第3页
指数、对数比较大小练习题(1+2+3+8=250)[骄阳学堂]_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、指数、对数比较大小1下图是指数函数(1),(2),(3),(4)的图象,则a,b,c,d与1的大小关系是( )A B C D2图中曲线是对数函数y=logax的图象,已知a取四个值,则相应于C1,C2,C3,C4的a值依次为( )A B C D3已知,的图象如图所示则a,b,c,d的大小为( )A B C D4如果,那么下列不等式中正确的是( )A B C D5若时,则与的关系是( )A B C D6已知,则,满足的条件是( )A B C D7设,则( )A B C D8以下四个数中的最大者是( )A B C D9若a=,b=,c=,则( )Aabc Bbac Ccab Dbca10设,则 (

2、 )A B C D11设,则( )A B C D12设,则a,b,c的大小关系是( )A B C D13设,则( )A B C D14设,则( )A B C D15已知函数,0abc Bcba Ccab Dbac“六法”比较指数幂大小对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法1转化法例1比较与的大小解:,又,函数在定义域上是减函数,即评注:在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断图象法例2比较与的大小解:设函数与,则这两个函数的

3、图象关系如图当,且时,;当,且时,;当时,评注:对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确3媒介法例3比较,的大小解:,评注:当底数与指数都不相同时,选取适当的“媒介”数(通常以“0”或“1”为媒介),分别与要比较的数比较,从而可间接地比较出要比较的数的大小作商法例比较与()的大小解:,又,即评注:当底数与指数都不同,中间量又不好找时,可采用作商比较法,即对两值作商,根据其值与1的大小关系,从而确定所比值的大小当然一般情况下,这两个值最好都是正数5作差法例5设,且,试比较与的大小解:(1)当时, 又,从而(2)当时,即又,故综上所述,评注:作差比较法是比较两个数值大小的最常用的方法,即对两值作差,看其值是正还是负,从而确定所比值的大小6分类讨论法例6比较与(,且)的大小分析:解答此题既要讨论幂指数与的大小关系,又要讨论底数与的大小关系解:()令,得,或当时,由,从而有;当时,(2)令,得,(3)令,得当时,由,从而有;当时,评注:分类讨论是一种重要的数学方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论