沈阳理工大学 高等数学E1课程教学大纲_第1页
沈阳理工大学 高等数学E1课程教学大纲_第2页
沈阳理工大学 高等数学E1课程教学大纲_第3页
沈阳理工大学 高等数学E1课程教学大纲_第4页
沈阳理工大学 高等数学E1课程教学大纲_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高等数学E1课程教学大纲课程代码:课程英文名称:Advanced Mathematics E1课程总学时:64 讲课:64 实验:0 上机:0适用专业:经济管理学院各专业(国际贸易专业除外)大纲编写(修订)时间:2010.7一、大纲使用说明(一)课程的地位及教学目标高等数学是全国各高校经济管理类专业必开设的一门主要的公共基础课,是期末考试科目之一,也是经济管理类专业研究生入学考试全国统考课之一,更是社会所需要的高级经济及管理人才必备的数学素养之一。通过这门课程的学习,学生将能系统地学习到一元函数微分学、不定积分的基础知识,基本理论和基本的计算方法及应用,这些知识将逐步被应用于后继课的学习中。(

2、二)知识、能力及技能方面的基本要求1.基本知识:通过本科程的学习,使学生掌握:函数、极限、连续、导数、微分、不定积分的概念;极限、导数、微分、不定积分的计算法;微分中值定理;导数的应用(特别是导数在经济中的应用)。2.基本能力:培养学生抽象思维的能力及逻辑推理的能力、基本运算能力、分析和解决实际问题的能力。 3.基本技能:掌握高等数学的基本运算技能;掌握运用matlab等工具进行具有一定难度和复杂度的高等数学运算技能。(三)实施说明1教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,

3、培养学生的自学能力;增加讨论课,调动学生学习的主观能动性。讲课要联系实际并注重培养学生的创新能力。 2教学手段:本课程属于理论基础课,在教学中主要以理论讲解为主,辅以适当的课堂练习,帮助同学更好的理解基本概念及基本方法,以确保在有限的学时内,全面、高质量地完成课程教学任务。(四)对先修课的要求 本课程的先修课程:本课程不需要先修课程,也即学生只需要具备在高中阶段学习的数学知识即可学习本课程。(五)对习题课、实践环节的要求 1至少两章安排一次习题课。2习题课的教学内容要配合主讲课程的教学进度,由老师和同学们在课堂上通过讲、练结合的方式进行。主讲教师通过批改学生的作业,将作业情况反馈给学生,要补充

4、有一定难度和综合度的练习题,以拓宽同学们的思路。(六)课程考核方式 1考核方式:考试 2考核目标:在考核学生对高等数学的基本知识、基本技能、基本能力的基础上,重点考核学生的分析能力及理论与实际的结合能力。 3成绩构成:本课程的总成绩主要由三部分组成:平时成绩(包括作业情况、出勤情况等)占10%,期中成绩占10%,期末考试成绩占80%。(七)参考书目微积分,苏德矿、金蒙伟主编 ,高等教育出版社,2004。微积分,赵树嫄编,中国人民大学出版社,2007。高等数学(上册),同济大学应用数学系主编,高等教育出版版,2006。二、中文摘要本课程是经济管理学院各专业学生必修的一门主干基础理论课程。通过该课

5、程的学习,使学生获得微分学、积分学、无穷级数、空间解析几何、微分方程的基本知识,基本概念、基本理论;培养一定的逻辑思维能力、空间想象能力和计算能力,为学习后继课程和伴随科学发展进一步扩大数学知识打下较好的基础。三、课程学时分配表序号教学内容学时讲课实验上机1函数与极限22221.1函数的概念21.2数列极限21.3函数极限的概念与性质41.4极限存在准则与两个重要极限41.5无穷小量与无穷大量21.6无穷小量阶的比较21.7函数的连续性41.8习题课22导数与微分12122.1导数概念22.2求导法则与基本求导公式42.3隐函数的导数22.4高阶导数22.5微分23微分中值定理与导数的应用20

6、203.1微分中值定理43.2未定式的极限23.3函数的单调区间223.4函数的极值23.5曲线的凹凸性与拐点23.6函数图形的描绘23.7导数在经济中的应用43.8习题课24不定积分10104.1不定积分的概念和性质24.2求不定积分的第一类换元法24.3求不定积分的第一类换元法24.4求不定积分的分部积分法24.5习题课2合计6464四、教学内容及基本要求第1部分 函数与极限总学时(单位:学时):22 讲课:22 实验:0 上机:0第1.1部分 函数的概念(讲课2学时) 具体内容: 1)理解函数的概念,掌握列出简单实际问题中的函数关系; 2)理解函数的单调性、周期性、有界性和奇偶性;3)理

7、解反函数和复合函数的概念;4)理解初等函数的概念和性质。重 点: 函数的单调性、周期性、有界性和奇偶性;初等函数的概念。第1.2部分 数列极限(讲课2学时) 具体内容: 理解数列极限概念与性质。重 点: 数列极限概念。难 点: 数列极限概念的“”语言描述。习 题: 数列极限的简单证明。第1.3部分 函数极限的概念与性质(讲课4学时) 具体内容: 1)理解函数极限概念与性质;2)掌握极限存在与左右极限存在的关系;3)掌握极限的四则运算法则。重 点: 函数极限概念;极限存在与左右极限存在的关系;极限的计算。难 点: 函数极限概念的语言描述。习 题: 函数极限的简单证明;讨论分段函数分段点处极限的存

8、在性;极限的计算。第1.4部分 极限存在准则与两个重要极限(讲课4学时) 具体内容: 1)理解求极限的两个准则; 2)掌握两个重要极限;3)掌握利用两个重要极限求极限方法。重 点: 利用两个重要极限求极限。难 点: 利用两个准则求极限。习 题:利用两个准则求极限的简单题型;利用两个重要极限求极限。第1.5部分 无穷小量与无穷大量(讲课2学时) 具体内容: 1)理解无穷小与无穷大的概念及二者关系; 2)掌握无穷小与无穷大的运算法则。重 点: 无穷小与无穷大的关系及各自的运算法则。难 点: 无穷大与有界的关系。习 题:关于无穷小的计算。第1.6部分 无穷小量阶的比较(讲课2学时) 具体内容: 1)

9、理解高阶无穷小、同阶无穷小和等价无穷小的概念; 2)利用等价无穷小代换求极限;重 点: 利用等价无穷小代换求极限。难 点: 利用等价无穷小代换求极限。习 题:无穷小量阶的比较;利用等价无穷小代换求极限。第1.7部分 函数的连续性(讲课4学时) 具体内容: 1)理解函数在一点连续和在区间连续的概念; 2)理解函数间断点的概念和分类;3)了解初等函数的连续性;4)理解闭区间上连续函数的性质。重 点: 函数在一点连续、间断的概念;间断点的分类;利用函数的连续性求极限;利用零点定理证明方程根的存在性。难 点: 利用零点定理证明方程根的存在性。习 题:间断点的分类;利用函数的连续性求极限;利用零点定理证

10、明方程根的存在性。第1.8部分 习题课(讲课2学时) 具体内容: 函数与极限知识总结和习题处理。第2部分 导数与微分 总学时(单位:学时):12 讲课:12 实验:0 上机:0第2.1部分 导数概念(讲课2学时) 具体内容: 1)理解导数的概念; 2)理解导数的几何意义;3)了解函数的可导与连续之间的关系;4)掌握求曲线在某点的切线与法线方程的方法。重 点:导数的概念;函数的可导与连续之间的关系;求曲线在一点的切线与法线方程。难 点: 导数概念的理解。习 题: 利用导数的概念求极限;分段函数在分段点处的可导性与连续性的讨论;求曲线在一点的切线与法线方程。第2.2部分 求导法则与基本求导公式(讲

11、课4学时) 具体内容: 1)掌握导数的四则运算法则; 2)掌握反函数求导、复合函数求导法则;3)掌握求导数的基本公式。重 点: 利用求导法则与基本求导公式求导数。难 点: 复合函数的求导。习 题: 利用求导法则与基本求导公式求导。第2.3部分 隐函数的导数(讲课2学时) 具体内容: 1)掌握求隐函数导数的方法;2)掌握对数求导法;重 点: 求隐函数的导数;对数求导法。难 点: 求隐函数的导数。习 题: 求隐函数的导数;求幂指函数及只由积、商、幂、方根构成的函数的导数。第2.4部分 高阶导数(讲课2学时) 具体内容: 1)理解高阶导数的定义; 2)掌握常见的高阶导数公式。重 点: 利用常见的高阶

12、导数公式求高阶导数。习 题:高阶导数的计算。第2.5部分 微分(讲课2学时) 具体内容: 1)理解微分的概念;2)理解可微、可导、连续之间的关系;3)掌握微分的运算法则。重 点: 微分的概念;微分的计算;可微、可导、连续之间的关系。难 点: 可微、可导、连续之间的关系。习 题:微分的计算。第3部分 微分中值定理与导数的应用总学时(单位:学时):20 讲课:20 实验:0 上机:0第3.1部分 微分中值定理(讲课4学时) 具体内容: 1)理解罗尔定理和拉格朗日定理; 2)了解柯西中值定理;3)掌握罗尔定理和拉格朗日定理的应用。重 点:罗尔定理和拉格朗日定理的应用。难 点: 利用罗尔定理和拉格朗日

13、定理做证明。习 题: 利用中值定理证明有关问题。第3.2部分 未定式的极限(讲课2学时) 具体内容: 掌握洛必达法则求未定式极限的方法。重 点: 用洛必达法则求未定式极限。习 题: 用洛必达法则求有关的函数极限。第3.3部分 函数的单调区间(讲课2学时) 具体内容: 1)判断函数的单调性及确定单调区间;2)利用单调性证明不等式。重 点: 函数的单调性判别;利用单调性证明不等式。难 点: 利用单调性证明不等式。习 题: 判断函数的单调性及确定单调区间;利用单调性证明不等式;单调性与零点定理结合确定方程根的存在情况。第3.4部分 函数的极值(讲课2学时) 具体内容: 1)理解函数的极值概念; 2)

14、掌握求函数的极值的方法;3)掌握求解简单的最大值和最小值的应用问题;4)利用极值和最值证明不等式。重 点:求函数的极值和最值。难 点: 利用极值和最值证明不等式。习 题:求函数极值与最值;利用极值和最值证明不等式。第3.5部分 曲线的凹凸性与拐点(讲课2学时) 具体内容: 1)理解曲线的凹凸性与拐点的概念; 2)掌握判别曲线的凹凸性的方法。重 点: 判断曲线的凹凸性并求拐点。习 题:曲线的凹凸区间的判别。第3.6部分 函数图形的描绘(讲课2学时) 具体内容: 利用函数的奇偶性、渐近线、单调区间、极值最值、凹凸区间及拐点等描绘函数图形。重 点: 函数作图。习 题:描绘函数图形。第3.7部分 导数

15、在经济中的应用(讲课4学时) 具体内容: 1)了解经济中常用的函数; 2)理解边际和弹性的概念;3)掌握边际分析的方法;4)掌握弹性分析的方法。重 点: 边际分析与弹性分析。习 题:利用边际分析与弹性分析,求解经济中相关问题。第3.8部分 习题课(讲课2学时) 具体内容: 微分中值定理和导数的应用知识总结和习题处理。第4部分 不定积分 总学时(单位:学时):10 讲课:10 实验:0 上机:0第4.1部分 不定积分的概念和性质(讲课2学时) 具体内容: 1)理解不定积分的概念; 2)理解不定积分的性质;3)掌握利用代数变形及三角公式求不定积分的方法;重 点:不定积分的概念及性质;利用代数变形及三角公式求不定积分。习 题: 利用代数变形及三角公式求简单的不定积分。第4.2部分 求不定积分的第一类换元法(讲课2学时) 具体内容: 掌握求不定积分的第一类换元法。重 点: 利用第一类换元法求不定积分。习 题: 利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论