![Matlab软包的Logistic回归实现)_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-5/13/774110f4-8774-4ac4-8b2e-418fcb01ab21/774110f4-8774-4ac4-8b2e-418fcb01ab211.gif)
![Matlab软包的Logistic回归实现)_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-5/13/774110f4-8774-4ac4-8b2e-418fcb01ab21/774110f4-8774-4ac4-8b2e-418fcb01ab212.gif)
![Matlab软包的Logistic回归实现)_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-5/13/774110f4-8774-4ac4-8b2e-418fcb01ab21/774110f4-8774-4ac4-8b2e-418fcb01ab213.gif)
![Matlab软包的Logistic回归实现)_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-5/13/774110f4-8774-4ac4-8b2e-418fcb01ab21/774110f4-8774-4ac4-8b2e-418fcb01ab214.gif)
![Matlab软包的Logistic回归实现)_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-5/13/774110f4-8774-4ac4-8b2e-418fcb01ab21/774110f4-8774-4ac4-8b2e-418fcb01ab215.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Matlab软件包与Logistic回归在回归分析中,因变量y可能有两种情形:(1) y是一个定量的变量,这时就用通常的regress函数对y进行回归;(2) y是一个定性的变量,比如,y 0或1,这时就不能用通常的regress函数对y进行回归,而是使用所谓的Logistic回归。Logistic回归的基本思想是,不是直接对y进行回归,而是先定义一种概率函数,令Pr Y 1| X1 人公2 X2, ,Xn Xn要求01。此时,如果直接对 进行回归,得到的回归方程可能不满足这个条件在现实生活中,一般有 01直接求的表达式,是比较困难的一件事,于是,人们改为考虑y 1的概率ky 1的概率般的,0
2、 k。人们经过研究发现,令b1 X1 XnPr Y 1| X1 x1, X2x2, Xn xa 0, bj0即, 是一个Logistic型的函数,效果比较理想。于是,我们将其变形得到:logb。0為b.Xn然后,对log 进行通常的线性回归例1 企业到金融商业机构贷款,金融商业机构需要对企业进行评估。例如, Moody 公司就是 New York 的一家专门评估企业的贷款信誉的公司。设:y 0, 企业 2年后破产y 1,企业 2年后具备还款能力下面列出美国66 家企业的具体情况:YX1X2X30-62.8-89.51.703.3-3.51.10-120.8-103.22.50-18.1-28.
3、81.10-3.8-50.60.90-61.2-56.21.70-20.3-17.41.00-194.5-25.80.5020.8-4.31.00-106.1-22.91.50-39.4-35.71.20-164.1-17.71.30-308.9-65.80.807.2-22.62.00-118.3-34.21.50-185.9-280.06.70-34.6-19.43.40-27.96.31.30-48.26.81.60-49.2-17.20.30-19.2-36.70.80-18.1-6.50.90-98.0-20.81.70-129.0-14.21.30-4.0-15.82.10-8.7
4、-36.32.80-59.2-12.82.10-13.1-17.60.90-38.01.61.2-57.90.70.8-8.8-9.10.9-64.7-4.00.1-11.44.80.943.016.41.347.016.01.9-3.34.02.735.020.81.946.712.60.920.812.52.433.023.61.526.110.42.168.613.81.637.333.43.559.023.15.549.623.81.912.57.01.837.334.11.535.34.20.949.525.12.618.113.54.031.415.71.921.5-14.41.0
5、8.55.81.540.65.81.834.626.41.819.926.72.317.412.61.354.714.61.753.520.61.135.926.42.039.430.51.953.17.11.939.813.81.259.57.02.016.320.41.021.7-7.81.6未分配利润V支付利息前的利润销售额X总资产X2总资产3总资产0000111111111111111111111111111111111其中X1建立破产特征变量y的回归方程。解:在这个破产问题中,我们讨论log 1,概率=企业不破产的概率。因为 值0.5,令1 y 1的次数1y 1的次数0,1。设 二企
6、业2年后具备还款能力的概率,即,66个数据有33个为0, 33个为1,所以,取分界0.50.50,7 1,由于我们并不知道企业在没有破产前概率 的具体值,也不可能通过X1,X2,X3的数据把这个具体的概率值算出来,于是,为了方便做回归运算,我们取区间的中值,y0对应X1X2X30.25-62.8-89.51.70.253.3-3.51.10.25-120.8-103.22.50.25-18.1-28.81.10.25-3.8-50.60.90.25-61.2-56.21.70.25-20.3-17.41.00.25-194.5-25.80.50.2520.8-4.31.00.25-106.1-
7、22.91.50.25-39.4-35.71.20.25-164.1-17.71.30.25-308.9-65.80.80.257.2-22.62.00.25-118.3-34.21.50.25-185.9-280.06.70.25-34.6-19.43.40.25-27.96.31.30.25-48.26.81.60.25-49.2-17.20.30.25-19.2-36.70.80.25-18.1-6.50.90.25-98.0-20.81.70.25-129.0-14.21.30.25-4.0-15.82.10.25-8.7-36.32.80.25-59.2-12.82.10.25; y
8、 1,对应0.75。数据表变为:于是,在Matlab软件包中编程如下,对log 1进行通常的线性回归:0.25-13.1-17.60.90.25-38.01.61.20.25-57.90.70.80.25-8.8-9.10.90.25-64.7-4.00.10.25-11.44.80.90.7543.016.41.30.7547.016.01.90.75-3.34.02.70.7535.020.81.90.7546.712.60.90.7520.812.52.40.7533.023.61.50.7526.110.42.10.7568.613.81.60.7537.333.43.50.7559.
9、023.15.50.7549.623.81.90.7512.57.01.80.7537.334.11.50.7535.34.20.90.7549.525.12.60.7518.113.54.00.7531.415.71.90.7521.5-14.41.00.758.55.81.50.7540.65.81.80.7534.626.41.80.7519.926.72.30.7517.412.61.30.7554.714.61.70.7553.520.61.10.7535.926.42.00.7539.430.51.90.7553.17.11.90.7539.813.81.20.7559.57.02
10、.00.7516.320.41.00.7521.7-7.81.6X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,-3.8,-50.6,0.9;1,-61.2,-56.2,1.7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,-4.3,1;1,-106.1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-34.2,1.5;1
11、,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12.8,2.1;1,-13.1,-17.6,0.9;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,
12、43,16.4,1.3;1,47,16,1.9;1,-3.3,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6
13、,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;a0=0.25*ones(33,1);a1=0.75*ones(33,1);y0=a0;a1;Y=log(1-y0)./y0);b,bint,r,rint,stats =regress(Y,X)rcoplot(r,ri
14、nt)执行后得到结果:b =0.3914-0.0069-0.0093-0.3263bint =0.0073 0.7755-0.0105 -0.0032-0.0156 -0.0030-0.5253 -0.1273r =-0.00371.0561-0.26830.67330.50280.31790.7320 -0.70441.13610.25530.4955 -0.1593 -1.76431.19840.0662 -0.99371.39830.99880.96210.30720.49420.81610.39570.11411.21761.22250.86700.74680.85310.57770.
15、85560.25880.9675 -0.6179 -0.3984 -0.5943 -0.4360 -0.7585 -0.4476 -0.5541 -0.5288 -0.36870.21940.9248 -0.3078 -0.7516-0.4266-0.9150-0.0680 0.0653-0.5082-1.1506-0.8882-0.5701-0.4191-0.3540-0.8289-0.4239-0.5720-0.3449-0.3153-0.4396-0.6967-0.3640-0.8616-0.8919 rint =-1.4320-0.3990-1.6975-0.7882-0.9222-1
16、.1498-0.7332-2.0696-0.3070-1.2048-0.9730-1.5626-2.9063-0.2499-1.3925-1.7217-0.0051-0.4609-0.4909-1.1505-0.9556-0.64771.42452.51131.16082.13491.92771.78562.19710.66092.57911.71541.96401.2441-0.62232.64661.5249-0.26572.80182.45852.41521.76491.94392.27991.8562-1.0648-1.3238-0.2340-0.2162-0.5911-0.7136-
17、0.6117-0.8868-0.6044-1.1944-0.4914-2.0862-1.8729-2.0558-1.9108-2.2125-1.9186-2.0271-2.0034-1.8340-1.1951-0.3186-1.7819-2.2238-1.8981-2.3643-1.5319-1.3378-1.9834-2.5850-2.3556-2.0422-1.8929-1.8195-2.2961-1.8955-2.0355-1.8178-1.7876-1.9105-2.1620-1.8335-2.32371.55212.66922.66132.32502.20732.31782.0421
18、2.31561.71202.42640.85041.07600.86711.03890.69551.02340.91900.94591.09671.63402.16811.16620.72051.04490.53421.39591.46830.96690.28390.57930.90201.05471.11160.63831.04760.89161.12801.15711.03130.76861.10550.60050.5707-2.3544 stats =0.569927.38410.00000.5526即,得到:R2值二0.5699 (说明回归方程刻画原问题不是太好),F_检验值=27.3
19、8410.0000 (这个值比较好),与显著性概率 0.05相关的p值=0.55260.05,说明变量Xi,X2,X3之间存在线性相关关系。回归方程为:log 110.3914 0.0069xi 0.0093x2 0.3263x310.3914 0.0069x1 0.0093x2 0.3263x3以及残差图:通过残差图看出,残差连续的出现在0的上方,或者连续地出现在0的下方,这 也暗示变量X1,X2,x3之间存在线性相关。编程计算它们的相关系数:X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;1,-120.8,-103.2,2.5;1,-18.1,-28.8,1.1;1,
20、-3.8,-50.6,0.9;1,-61.2,-56.2,1.7;1,-20.3,-17.4,1;1,-194.5,-25.8,0.5;1,20.8,43,1;1,-106.1,-22.9,1.5;1,-39.4,-35.7,1.2;1,-164.1,-17.7,1.3;1,-308.9,-65.8,0.8;1,7.2,-22.6,2.0;1,-118.3,-34.2,1.5;1,-185.9,-280,6.7;1,-34.6,-19.4,3.4;1,-27.9,6.3,1.3;1,-48.2,6.8,1.6;1,-49.2,-17.2,0.3;1,-19.2,-36.7,0.8;1,-18.
21、1,-6.5,0.9;1,-98,-20.8,1.7;1,-129,-14.2,1.3;1,-4,-15.8,2.1;1,-8.7,-36.3,2.8;1,-59.2,-12.8,2.1;1,-13.1,-17.6,0.9;1,-38,1.6,1.2;1,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,43,16.4,1.3;1,47,16,1.9;1,-3.3,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,
22、2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4
23、,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;X1=X(:,2);X2=X(:,3);X3=X(:,4);corrcoef(X1,X2)corrcoef(X1,X3)corrcoef(X2,X3)执行后得到结果: ans =1.0000 0.64090.6409 1.0000 ans =1.0000 0.04670.0467 1.0000ans =1.0000 -0.3501-0.3501 1.0000可见corrcoef(X1,X2) = 0.64,这说明,在做回归时,可以去
24、掉捲列,或者去掉他列。根据经济意义,我们去掉Xi列,再进行回归X=1,-62.8,-89.5,1.7;i,3.3,-3.5,i.i;i,-i20.8,-i03.2,2.5;i,-i8.i,-28.8,i.i;i,-3.8,-50.6,0.9;i,-6i.2,-56.2,i.7;i,-20.3,-i7.4,i;i,-i94.5,-25.8,0.5;i,20.8,-4.3,i;i,-i06.i,-22.9,i.5;i,-39.4,-35.7,i.2;i,-i64.i,-i7.7,i.3;i,-308.9,-65.8,0.8;i,7.2,-22.6,2.0;i,-ii8.3,-34.2,i.5;i,
25、-i85.9,-280,6.7;i,-34.6,-i9.4,3.4;i,-27.9,6.3,i.3;i,-48.2,6.8,i.6;i,-49.2,-i7.2,0.3;i,-i9.2,-36.7,0.8;i,-i8.i,-6.5,0.9;i,-98,-20.8,i.7;i,-i29,-i4.2,i.3;i,-4,-i5.8,2.i;i,-8.7,-36.3,2.8;i,-59.2,-i2.8,2.i;i,-i3.i,-i7.6,0.9;i,-38,i.6,i.2;i,-57.9,0.7,0.8;1,-8.8,-9.1,0.9;1,-64.7,-4,0.1;1,-11.4,4.8,0.9;1,4
26、3,16.4,1.3;1,47,16,1.9;1,-3.3,4,2.7;1,35,20.8,1.9;1,46.7,12.6,0.9;1,20.8,12.5,2.4;1,33,23.6,1.5;1,26.1,10.4,2.1;1,68.6,13.8,1.6;1,37.3,33.4,3.5;1,59,23.1,5.5;1,49.6,23.8,1.9;1,12.5,7,1.8;1,37.3,34.1,1.5;1,35.3,4.2,0.9;1,49.5,25.1,2.6;1,18.1,13.5,4;1,31.4,15.7,1.9;1,21.5,-14.4,1;1,8.5,5.8,1.5;1,40.6,
27、5.8,1.8;1,34.6,26.4,1.8;1,19.9,26.7,2.3;1,17.4,12.6,1.3;1,54.7,14.6,1.7;1,53.5,20.6,1.1;1,35.9,26.4,2;1,39.4,30.5,1.9;1,53.1,7.1,1.9;1,39.8,13.8,1.2;1,59.5,7,2;1,16.3,20.4,1;1,21.7,-7.8,1.6;a0=0.25*ones(33,1);a1=0.75*ones(33,1);y0=a0;a1;Y=log(1-y0)./y0);X1=X(:,2);X2=X(:,3);X3=X(:,4);E=ones(66,1);B=E
28、,X2,X3;b,bint,r,rint,stats =regress(Y,B)rcoplot(r,rint)执行后得到:b =0.6594-0.0177-0.4676bint =0.2672 1.0516-0.0226 -0.0127-0.6702 -0.2649-0.3478 0.8917 -0.2159 0.4445 -0.0343 0.2408 0.5992 0.2170 0.8308 0.7358 0.3693 0.7342 -0.3497 0.9749 0.5361 -1.3769 1.6861 1.1584 1.3075 0.2755 0.1646 0.7451 0.8665 0
29、.7961 1.1419 1.1068 1.1949 0.5489 1.0286 0.8256 0.6992 0.4153 0.9449 -0.8603 -0.5868-0.4249-0.5020-1.1145-0.4149-0.6395-0.5923-0.76600.46881.2219-0.4490-0.7927-0.4540-1.2630-0.0987 0.3509 -0.5921 -1.5450 -0.9541 -0.8139 -0.4498 -0.2107 -0.9275 -0.7051 -0.8796 -0.3563-0.3306-0.7441-0.9530-0.6992-0.92
30、99-1.1478 rint =1.23252.50541.35602.06361.56961.85582.21731.82372.44492.35611.98822.3537-1.9280-0.7220-1.7877-1.1746-1.6382-1.3743-1.0189-1.3898-0.7833-0.8845-1.2496-0.8853-1.9330 -0.6385 -1.0852 -2.1813 0.1435 -0.4463 -0.2909 -1.3275 -1.4460 -0.8695 -0.7514 -0.8222 -0.4645 -0.4883 -0.4091 -1.0680 -
31、0.5813 -0.7851 -0.9163 -1.1827 -0.6638 -2.4750 -2.2082 -2.0392 -2.1230 -2.7155 -2.0332 -2.2586 -2.2133 -2.3850 -1.0894 -0.1453 -2.0695 -2.4121 -2.0716 -2.8575 -1.7076 -1.1978 -2.2135 -3.1230 -2.5686 -2.4329 -2.0699 -1.82581.23352.58832.1574-0.57243.22862.76312.90591.87851.77522.35972.48432.41442.748
32、22.70202.79882.16592.63842.43642.31462.01322.55350.75431.03451.18941.11900.48651.20340.97951.02870.85312.02702.58921.17150.82681.16370.33151.51021.89951.02920.03310.66030.80521.17041.4044-2.54070.6858-2.32540.9152-2.49080.7316-1.97551.2629-1.94901.2879-2.36440.8761-2.56430.6582-2.31980.9215-2.53830.
33、6785-2.75540.4598stats =0.4716 28.11750.00000.6681以及残差图:残差图仍然显示变量之间的相关性,这说明,最开始调查数据时,3个指标没有选好。最后得到:1 2log 20.6594 0.0177x2 0.4676x32120.6594 0.0177x2 0.4676x31 e将企业的具体数据X2,X3代入 的表达式计算,再结合0,0.5y1,0.5金融机构就可以知道,是否应该贷款给这家企业。注:一个通常的Regress回归,可以用R2, R2 , F test等参数评价回归结果的好 坏,但对Logistic回归来说,不存在这样简单而令人满意的评价参数,所以,一 般应该进行回归诊断。Logistic回归的诊断所谓的Logistic回归诊断,就是将Xi的原始数据代入求得的回归方程中,计算y值,看看有多少个由回归方程计算所得的y值与原始的y值不同,因而判断回归方程的好坏。1(1)用回归方程 11 e.3914 0.0069为 0.0093X2 0.3263x3 进行诊断。在Matlab软件包中,X=1,-62.8,-89.5,1.7;1,3.3,-3.5,1.1;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球手工巧克力行业调研及趋势分析报告
- 2025年全球及中国天麻素制剂行业头部企业市场占有率及排名调研报告
- 2025年全球及中国三氟化铕行业头部企业市场占有率及排名调研报告
- 2025年全球及中国台式化学发光免疫分析仪行业头部企业市场占有率及排名调研报告
- 2025-2030全球棱镜胶带片行业调研及趋势分析报告
- 2025年全球及中国十六硫醇行业头部企业市场占有率及排名调研报告
- 2025-2030全球波纹型空气弹簧行业调研及趋势分析报告
- 2025年全球及中国高分辨率扫描电子显微镜(SEM)行业头部企业市场占有率及排名调研报告
- 2025-2030全球紫外熔融石英平凸(PCX)透镜行业调研及趋势分析报告
- 2025-2030全球建筑垃圾分类设备行业调研及趋势分析报告
- 课题申报参考:流视角下社区生活圈的适老化评价与空间优化研究-以沈阳市为例
- 《openEuler操作系统》考试复习题库(含答案)
- 项目重点难点分析及解决措施
- 挑战杯-申报书范本
- 北师大版五年级上册数学期末测试卷及答案共5套
- 2024-2025学年人教版生物八年级上册期末综合测试卷
- 2025年九省联考新高考 语文试卷(含答案解析)
- 第1课《春》公开课一等奖创新教案设计 统编版语文七年级上册
- 全过程工程咨询投标方案(技术方案)
- 心理健康教育学情分析报告
- 安宫牛黄丸的培训
评论
0/150
提交评论