(完整版)解三角形知识点归纳总结_第1页
(完整版)解三角形知识点归纳总结_第2页
(完整版)解三角形知识点归纳总结_第3页
(完整版)解三角形知识点归纳总结_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章解三角形.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等, 并且都等于外接圆的直径,即abc2R(其中R是三角形外接圆的半径)sin Asin Bsi nC2.变形:1)a bcabcsinsinsi nCsinsinsi nC2)化边为角:a :b: csin A:sin B:sin C -asi nA. bsin B asin AbJsin B csin C csin C 3)化边为角:a2Rsin A,b 2Rsi nB,c 2Rs inC4)化角为边:sin Aa .Jsin Bb si nA asin Bbsin Cc sin C c5)化角为边:sin

2、Aasin Bbc,si nC2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题: 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=180,求角A,由正弦定理-Sn) - Sn b sin B c sin Ca sin A t;求出b与cc sin C 已知两边和其中一边的对角,求其他两个角及另一边。例:已知边a,b,A,解法:由正弦定理a求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理a泄求出c边c sin C4. ABC中,已知锐角A,边b,贝U a bsin A时,B无解; a bsinA或a b时,B有一个解; bsin

3、A a b时,B有两个解。如:已知A 60 ,a 2,b2.3,求B(有一个解)已知A 60 , b 2,a2 3,求B (有两个解)注意:由正弦定理求角时,注意解的个数.三角形面积1. Sabcabs inC2bcsin A2acs inB22. S abc -(a b c)r ,其中r是三角形内切圆半径.2 13. Sabc JP(P a)( p b)( p c),其中 p 2(a b c),4. s ABC abc,R为外接圆半径4R5. S ABC 2R2sin A si n Bsin C ,R 为外接圆半径三. 余弦定理1. 余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这

4、两边与它们夹角的余弦的积的2 倍,即2 ab22 c2bccos Ab22 a2 c2accos B2 c2 ab22abcosCb222ca2.变形:cos A -2bc2 2 . 2 a c b cosB2aca2 b2 c2cosC2ab注意整体代入,如:a2 c2 b2 ac cosB -23利用余弦定理判断三角形形状:设a、b、c是C的角 、C的对边,贝U:F 4占立亡小営卫 0 J 90 若,所以V为锐角 若c2 b2 a2 A为直角2T2J +A2 亡 0 eos4 = 90* 若,所以以为钝角,则4亠是 钝角三角形4.利用余弦定理可以解决下列两类三角形的问题:1)已知三边,求三

5、个角2)已知两边和它们的夹角,求第三边和其他两个角 四、应用题1. 已知两角和一边(如 A、B、C),由A+B+C= n求C,由正弦定理求a、b.2. 已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理 先求较短边所对的角,然后利用 A+B+C= n ,求另一角.3. 已知两边和其中一边的对角(如 a、b、A),应用正弦定理求B,由A+B+C =冗求C,再由正弦定理或余弦定理求 c边,要注意解可能有多种情况.4. 已知三边a、b、c,应用余弦定理求A、B,再由A+B+C= n,求角C.5. 方向角一般是指以观测者的位置为中心, 将正北或正南方向作为起始方向 旋转到目标的方向线所

6、成的角(一般指锐角),通常表达成.正北或正南,北偏东XX度, 北偏西XX度,南偏东XX度,南偏西XX度.6. 俯角和仰角的概念:在视线与水平线所成的角中,视线在水平线上 方的角叫仰角,视线在水平线下方的角叫俯角.五、三角形中常见的结论1)三角形三角关系:A+B+C=180 ; C=180 (A+B);2)三角形三边关系:两边之和大于第三边:.八-:,:二,:“ ;两边之差小于第三边:川 -,:,;* ;3) 在同一个三角形中大边对大角:A B a b sin A sin B4)三角形内的诱导公式:sin(A B) si nC, cos(A B) cosC, tan (A B) tanC,AB

7、“C、tantan( )2 2 2CC、sin( )cos()22_2_cos(C)sin(C)2 2 25)两角和与差的正弦、余弦、正切公式(1)si n( aB ) = sin a cos B 土 cos a sin B .(2)cos(a= cos ocos B?sin ain Btan aa n Btan( aB = 1?tan aan B6)二倍角的正弦、余弦、正切公式(1)sin 2 a= 2sin a cos a .(2)cos 22 . 2a = cos a Sin a=2cos? a 1 = 1 2sin 1 2 a . sin2 tan 22ta n a1 tan2 a7)三角形的五心:垂心一一三角形的三边上的高相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论