版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、泊肃叶定律公式(qv就等于Q)实验表明,流体在水平圆管中作层流运动时,其体积流量Q与管子两端的压强差p,管的半径r,长度L,以及流体的粘滞系数有以下关系:Q=r4p/(8L) 这就著名的泊肃叶定律。令R8L/(r4),即Qp/R,R称为流阻。可对泊肃叶定律作进一步讨论:(1)流阻R与管子半径r的四次方成反比。这说明,管子的半径对流阻的影响非常大。例如,在管子长度、压强差等相同的情况下,要使半径为r/2的管子与半径为r的管子有相同的流量,并联细管的根数需要24,即16根。(2)流阻R与管子的长度L成正比。管子越长,流阻越大。(3)流阻R与液体的粘滞系统成正比。液体的粘滞系数越大,流阻就越大。由此
2、可见,流量Q是由液体的粘滞系数、管子的几何形状和管子两端压强差P等因素共同决定的。泊肃叶定律可以近似地用于讨论人体的血液流动。但应指出,由于血管具有弹性,与刚性的管子不同,其半径是可变的,因此流阻会随血管半径的变化而变化,这一变化也会影响到血液的流量Q。C3.4.2 泊肃叶定律 将速度分布式(C3.4.6a)沿圆管截面积分,可得体积流量为(C3.4.8a)或(C3.4.8b) (C3.4.8a)和(C3.4.8b)式就是著名的泊肃叶定律,它表明不可压缩牛顿流体在圆管中作定常层流时,体积流量正比于比压降和管半径的四次方,反比于流体的粘度。圆管截面上的平均速度为(C3.4.9)上式表明平均速度是最
3、大速度的一半。利用(C3.4.9)沿程水头损失可表为 (C3.4.10) 上式表明沿程水头损失与平均速度一次方成正比。 上述理论结果(C3.4.8)和(C3.4.10)式与哈根(G.Hagen,1893)和泊肃叶(J.Poisenille,1840)分别独立地获得的实验结果相吻合,因此(C3.4.8)式被称为哈根-泊肃叶定律,简称泊肃叶定律。泊肃叶定律从理论和实验上首次证实了牛顿粘性假设、壁面不滑移假设的正确性及N-S方程的适用性,因此具有重要理论和实际意义。利用泊肃叶定律可求得流体粘度表达式(C3.4.11) 上式表明在一定管径和比压降条件下,流体粘度可通过测量流量来确定,这就是毛细管粘度计
4、的原理。思考题C3.4.2例C3.4.1圆管定常层流:N-S方程精确解 例C3.4.2毛细管粘度计:泊肃叶流C3.5 圆管湍流流动C3.5.1 湍流简介1湍流的特点 迄今为止,还很难对湍流下一个确切定义。笼统地讲,湍流是一种在任一空间点的瞬时物理量都在作剧烈变化的随机运动。近期的研究认为在湍流中存在无序的小尺度脉动结构和具有某种次序的大尺度旋涡结构(拟序结构)的复合结构。湍流的特点是随机性、掺混性和涡旋性,这些特点使湍流元的质量、动量和能量传输强度超过分子运动的几个数量级,例如湍流的表观粘度可比层流的牛顿粘度增加成千上万倍。(管内湍流演示)湍流运动的复杂性给数学表达造成困难,但在工程上感兴趣的
5、是湍流在有限时间段和有限空间域上的平均效应,因此如同对分子运动取统计平均值一样,对湍流质点在更大范围内再取一次统计平均。例如在时域上对有限时间段取平均,称为时均法;在空间域上对有限空间域取平均,称为体均法等。图C3.5.1图C3.5.1为在一定常湍流的某空间点上用热线测速仪测得的x方向的瞬时速度分量u随时间的变化值。(用热线测速仪测得的湍流信号)瞬时速度可看作时均值( )与脉动值(u)之和(C3.5.1)时均值的平均周期为T(C3.5.2) 时均值不像瞬时值那样随时间随机变化,而是较缓慢地变化,可用确定性函数表示。对定常湍流,时均值与时间无关而仅是空间位置的函数。脉动值的时间平均值为零 类似地
6、,所有湍流物理量均可表示为时均值与脉动值之和,例如压强可表为(C3.5.3)将湍流速度和压强(C3.5.1)式和(C3.5.3)式代入流体力学的基本方程后再取统计平均,可得湍流运动基本方程。当方程中存在脉动值项时,由于脉动值与时均值之间的函数关系难以确定,因此目前在理论上尚无法求解方程,但可以在一定条件下结合实验数据求得半经验半解析结果,以满足工程需要。2、 圆管中的湍流切应力 设圆管定常湍流中x和r方向的速度分量为(C3.5.8) x 方向的流动切应力应由时均速度 的速度梯度决定的层流切应力l和由脉动速度u,v 决定的湍流脉动切应力t(通常称为雷诺应力)两部分组成(C3.5.9) 为理解雷诺应力与脉动速度的关系,考察流场中垂直于r轴的控制面元A,该处的脉动速度分量为u,v (图C3.5.3)。图C3.5.3单位时间通过A进入下层的流体质量为 ,x 方向的动量变化即为A在x 方向受到的切向力 瞬时切应力为(C3.5.10)由脉动速度的连续性方程 可知u 和 v符号相反,对(C3.5.10)式取时均值即为雷诺应力(C3.5.11)将上式代入(C3.5.9)式(C3.5.12) 圆管中湍切应力从壁面到轴心的分布可分为三个区(图C3.5.4):(1) 粘性底层区 在壁面附近的薄层内(厚度约0.1mm量级),时均速度梯度很大(比同流量层流速度梯度大得多),因此粘性切应力占主导地
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林艺术学院《影视照明技术》2021-2022学年第一学期期末试卷
- 吉林艺术学院《书法实训I》2021-2022学年第一学期期末试卷
- 吉林艺术学院《剪辑基础》2021-2022学年第一学期期末试卷
- 2024年供热管网互联互通协议书模板
- 吉林师范大学《中国东北史》2021-2022学年第一学期期末试卷
- 2024年大型绿植售卖合同范本
- 2024年大厂员工合同范本
- 娱乐场营销合同协议书范文范本
- (浙教2024版)科学七年级上册3.2 太阳系的组成与结构 课件(共2课时)
- 吉林师范大学《外国古代教育史》2021-2022学年第一学期期末试卷
- m301项目性能评估管控报告
- 美国大联盟数学竞赛英汉对照表
- 事故应急救援培训考试试题(附答案)
- 5、风电吊装施工指导手册
- 10以内的分与合
- 浅析新能源电动汽车火灾调查方法
- 养老院健康体检表
- 高中英语选修一(人教版)2-2Learning About Language 教学课件
- 韵母教学讲解课件
- 《马立平中文》教学大纲
- 一年级美术大眼睛-完整版课件
评论
0/150
提交评论