版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形内角和教学设计杨海慧9教材分析】三角形内角和”是三角形的一个重要性质,是“图形与几何”领域的重要内容之一,学好它有助于学生理解三角形内角之间 的关系,也是进一步学习几何的基础。学情分析】学生在本节课学习之前已经认识了三角形的基本特征及分类, 并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角 的度数,学生的数学知识、能力和思考问题的角度有一定的差异, 因此课堂上比较容易出现解决问题策略的多样化。设计理念】本节课主要采用自主探究、小组合作、全班交流的方式,让学 生通过探究式学习,在活动中体验三角形内角和性质的探索过程, 发现三角形内角和的性质,并能运用这一性质解决相关的问题,进 而
2、加深学生对三角形内角和的认识。首先让学生知道“内角”的含义;然后引导学生探究三角形的 内角和是多少 ?大多数学生可能会想到用测量的方法,此时可以顺势引导安排小组活动。让每组同学选取大小、形状不同的三角形, 分别量出三个内角的度数并求出它们的和,填在相应的表格中;最 后通过比较发现:大小、形状不同的三角形,每一个三角形内角和 都在 180左右;也可能会有学生提出已经知道三角形的内角和是180,这时我会表示怀疑,并将一个大的三角形纸等分成两个小三角形进行设疑:每个小三角形的内角和还是180吗?在学生感到疑惑时,顺势引导学生系统、深刻地再经历测量、计算的过程, 当学生经过计算确认这两个小三角形内角和
3、是 180后,再让学生思考其它的三角形呢?能否不用测量的方法呢?进而引导学生利用 撕、折的方法验证猜想。教学内容】人民教育出版社, 义务教育课程标准实验教科书数学四年 级下册第 85 页。教学目标】1通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于 180。2通过把三角形的内角和转化为平角进行探究的过程,渗透转化”的数学思想。3发展学生动手操作、观察比较和抽象概括的能力。4能应用三角形内角和的性质解决一些简单的问题。教学重点】用不同的方法探究和发现三角形内角和是 180。教学难点】进一步加深了对三角形内角和的理解和运用。教具准备】一副三角尺;多媒体课件、大三角形纸若干张(备用)学具
4、准备】直角三角形、锐角三角形和钝角三角形各一个,并分别测量出 每个内角的度数标在图中 ;一副三角尺。教学过程】、创设情境,谈话导入猜谜语: 形状似座山,稳定性能坚, 三竿首尾连, 学问不简单。(打一几何图形 )生:三角形师:同学们真了不起,一下就猜到了答案。师:最近我们一直在研究三角形的知识,谁能给大家介绍一下?生:回顾已学过的三角形知识师:通过学习,我们知道了三角形的那么多的知识,大家说数学知识是不是很神奇?今天我们还要继续研究三角形的新知识。设计意图:回忆已经学过的三角形知识为新内容进行铺垫。同时,也为知识的迁移作了伏笔。 课标强调学生数学学习的过程是建立在经验基础上的一个主动建构的过程。
5、 ) 二、以疑激思,引出课题师:什么是三角形的内角 ? 三角形有几个内角 ?生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形 内形成了三个角 (课件闪烁三个角的弧线 ),我们把三角形内的这三个角,分别叫做三角形的内角。师:有两个三角形为了一件事正在争论,我们来帮帮他们。 (出 示课件)师:同学们,请你们给评评理:是这样吗 ?生 1 :我认为是这样的,因为大三角形大,它的三个内角的和就 大。生 2 :我不同意,我认为两个三角形的三个内角和的度数都是一 样的。生 3 :当然是大三角形的内角和大了。生 4 :我同意第二个同学的意见,两个三角形的
6、内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内 角和大,还有部分同学认为两个三角形的内角和的度数都是一样 的。那么到底谁说得对呢 ?本节课我们就一起来研究这个问题。(板书课题:三角形的内角和 )师:若这时有学生提出已经知道三角形的内角和是 180,我在表示质疑的同时,拿出事先准备好的三角形纸将其等分成两个小三 角形,每个三角形的内角和还是 180吗?当学生也表示怀疑时,顺势引导学生系统、深刻地再经历测量、计算的过程。当学生经过计算确认这两个小三角形内角和是 180后,让学生思考其它的三角形呢?能否不用测量的方法呢?在学生思考的基础上,引导学生 利用撕、折的方法验证猜想。三
7、、动手操作,探究新知1、师拿出两个三角尺教具,问:它们是什么三角形?生:直角三角形。师:请大家拿出自己的两个三角尺,在小组内说说每一个三角 尺上三个内角的度数,并求出这两个直角三角形的内角和。生:每块三角尺的 3 个内角的和都是 180。师:其他三角形的内角和也是 180吗 ?生 A :其他三角形的内角和也是 180。生 B :不一定 。设计意图:让学生经历了矛盾,发现问题后,再和小组的同学一起讨论、探究更好的验证方法,教师给予学生足够的时间和空 间,让每个学生自主参与撕、折的实践活动,让学生在经历猜想、 验证、演示、汇报过程中解决问题,发展学生空间观念和推理能 力。)2、师:同学们能通过动手
8、操作,想办法来验证自己的猜想吗请同学们先进行独立思考,然后在小组内把你的想法与同伴进行交 流,最后选用一种方法进行验证。看谁最先发现其中的“奥秘”; 看谁能争取到向大家作“实验成功的报告”。1)小组合作、讨论、验证方法2)汇报验证方法、结果师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果 怎样?生 A :我们小组是用撕的方法。每人选取一个不同形状的三角 形,用手分别把 3 个角撕下来,然后再拼,结果拼成一个平角,得 到三角形的内角和是 180 度。师:上来展示给大家瞧一瞧。 (投影仪展示)你们看这小组的同 学多细心呀,为了不混淆,在撕之前,他们先给 3 个角分别标上了 符号。师:现在请同
9、学们看大屏幕,我在电脑里把刚才撕的过程重播 一遍。(课件演示) 3 个角拼成了一个平角生 B :我们小组是用折的方法,同样得到三角形的内角和是180 度。师:好,请这位同学到前面来折给大家看看。投影仪展示后课件演示)生:3 个角折成了一个平角。师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们 小组还有折其他三角形的吗? (学生汇报后课件演示)师:锐角三角形、钝角三角形都折了几次?( 3 次)现在请同 学们看屏幕,让我们来看看直角三角形折了几次?( 课件展示:直 角三角形折的过程)师:折了几次?想想为什么直角三角形可以只折两次就能证2个明。生;因为它是一个直角三角形,已经有了一个直角,另外
10、 锐角只要能拼成直角,三个角的和就是 180了。师:说得真清楚。还有没有不同的方法?生 C :我们小组是用测量、计算的方法,但我们发现三角形的 内角和有的比 180,有的比 180小,有的正好是 180。师:为什么会出现这种情况呢?生:因为测量时会出现一些误差,所以测量出的结果不是很准 确。师:同学们真的很棒!师:刚才同学们用撕、折、量等方法证明了无论是什么样的三 角形内角和都是 180(板书:是 180)现在让我们用自豪的、肯定的语气读出我们的发现: “三角形的内角和是 180”。师:出示一个大三角形)它的内角和是多少度?生:180师:出示一个很小的三角形 )它的内角和是多少度?生:180
11、。师:一块三角尺的内角和 180,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢 ?生 A: 180生 B: 360师:究竟谁对呢?让学生在小组内拼一拼,进行讨论。经过一翻激烈的讨论探究后,学生可以找到答案。生 A:180 ,因为两个三角形拼在一起,就变成了一个三角 形了,每个三角形的内角和总是 180 。生 B :我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少 180 ,所以 大三角形的内角和还是 180,不是 360。师:你们真聪明。(课件演示)师: 三角形不论位置、大小、形状如何,它的内角和总是180。(设计意图:这里通过教师提出具有思
12、考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学 习状态中。) 四、巩固深化,加深理解我们学习了三角形的内角和,你能运用所学知识解决下面的问题吗? (课件出示)1、求三角形中一个未知角的度数。在三角形中,已知/ 1 = 140,/ 3=25,求/ 2的度数。2、判断一个三角形的三个内角度数是: 80、7524。)( 2 ) 三 角 形 越 大 , 它 的内 角 和 就 越 大 。个三角形至少有两个 角 是 锐 角 。4 ) 钝 角 三 角 形 的 两 个 锐 角 和 大 于 90 。3、解决生活实际问题。1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?2)交通“警示牌”为等边三角形,求其中一个角的度数。4、拓展练习。利用三角形内角和是 180,求出下面四边形、六边形的内角和?师:小组的同学讨论一下,看谁能找到最佳方法。学生汇 报(课件演示)。让学生写在自己的练习本上。设计意图: 练习设计由浅入深,由易到难,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44895-2024市场和社会调查调查问卷编制指南
- 2024年度建筑工程合同:办公楼装修工程的设计与施工
- 统编人教版六年级语文上册《语文园地四》精美课件
- 2024年度技术转让合同标的的技术改进要求2篇
- 2024年度给水工程分包合同(建筑)3篇
- 劳动合同法的心得体会
- 2024年度版权质押合同:著作权抵押融资具体规定3篇
- 资产抵押合同
- 学校课件-教案包
- 《商务统计素材》课件
- 实验室设备安装调试及技术支持方案
- 糖尿病健康知识讲座
- 机器人感知智能 课件 第3、4章 机器人视觉感知、机器人接近觉感知
- 2024年再生资源回收与利用合作协议
- 生物-江西省稳派上进联考2024-2025学年2025届高三上学期11月调研测试试题和答案
- 《胶轮车操作工》(司机、检修)理论知识考试及答案
- 森林康养基地建设项目可行性研究报告
- 机械行业质量奖惩制度
- 中国航空学会-2024低空经济场景白皮书
- 23J916-1 住宅排气道(一)
- 古典诗词鉴赏学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论