




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初等函数的图形幂函数的图形指数函数的图形对数函数的图形 三角函数的图形各三角函数值在各象限的符号sincsc cossec tancot三角函数的性质函数y=sinxy=cosxy=tanxy=cotx定义域RRxxR且xk+,kZxxR且xk,kZ值域-1,1x=2k+ 时ymax=1x=2k- 时ymin=-1-1,1x=2k时ymax=1x=2k+时ymin=-1R无最大值无最小值R无最大值无最小值周期性周期为2周期为2周期为周期为奇偶性奇函数偶函数奇函数奇函数单调性在2k-,2k+ 上都是增函数;在2k+ ,2k+上都是减函数(kZ)在2k-,2k上都是增函数;在2k,2k+上都是减函
2、数(kZ)在(k-,k+)内都是增函数(kZ)在(k,k+)内都是减函数(kZ)反三角函数的图形 反三角函数的性质名称反正弦函数反余弦函数反正切函数反余切函数定义y=sinx(x-, 的反函数,叫做反正弦函数,记作x=arsinyy=cosx(x0,)的反函数,叫做反余弦函数,记作x=arccosyy=tanx(x(- , )的反函数,叫做反正切函数,记作x=arctanyy=cotx(x(0,)的反函数,叫做反余切函数,记作x=arccoty理解arcsinx表示属于-,且正弦值等于x的角arccosx表示属于0,且余弦值等于x的角arctanx表示属于(-,),且正切值等于x的角arcco
3、tx表示属于(0,)且余切值等于x的角性质定义域-1,1-1,1(-,+)(-,+)值域-,0,(-,)(0,)单调性在-1,1上是增函数在-1,1上是减函数在(-,+)上是增数在(-,+)上是减函数奇偶性arcsin(-x)=-arcsinxarccos(-x)=-arccosxarctan(-x)=-arctanxarccot(-x)=-arccotx周期性都不是同期函数恒等式sin(arcsinx)=x(x-1,1)arcsin(sinx)=x(x-,)cos(arccosx)=x(x-1,1) arccos(cosx)=x(x0,)tan(arctanx)=x(xR)arctan(ta
4、nx)=x(x(-,))cot(arccotx)=x(xR)arccot(cotx)=x(x(0,)互余恒等式arcsinx+arccosx=(x-1,1)arctanx+arccotx=(XR)三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinACosACos2A = C
5、os2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tanatan(+a)tan(-a)半角公式sin()=cos()=tan()=cot()= tan()=和差化积 sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差 sinasinb = -cos(a+b)-cos(a-b)cosacosb = cos(a+b)+cos(a-b)sinacosb = s
6、in(a+b)+sin(a-b)cosasinb = sin(a+b)-sin(a-b)诱导公式 sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sinasin(+a) = cosacos(+a) = -sinasin(-a) = sinacos(-a) = -cosasin(+a) = -sinacos(+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式asina+bcosa=sin(a+c) 其中tanc=asin(a)-bcos(a) = cos(a-c) 其中tan(c)=1+sin(a)
7、=(sin+cos)21-sin(a) = (sin-cos)2其他非重点三角函数csc(a) = sec(a) =双曲函数sinh(a)=cosh(a)=tg h(a)=公式一设为任意角,终边相同的角的同一三角函数的值相等: sin(2k)= sin cos(2k)= cos tan(2k)= tan cot(2k)= cot 公式二 设为任意角,+的三角函数值与的三角函数值之间的关系: sin()= -sin cos()= -cos tan()= tan cot()= cot 公式三 任意角与 -的三角函数值之间的关系: sin(-)= -sin cos(-)= cos tan(-)= -
8、tan cot(-)= -cot 公式四 利用公式二和公式三可以得到-与的三角函数值之间的关系: sin(-)= sin cos(-)= -cos tan(-)= -tan cot(-)= -cot 公式五 利用公式-和公式三可以得到2-与的三角函数值之间的关系: sin(2-)= -sin cos(2-)= cos tan(2-)= -tan cot(2-)= -cot 公式六及与的三角函数值之间的关系: sin(+)= cos cos(+)= -sin tan(+)= -cot cot(+)= -tan sin(-)= cos cos(-)= sin tan(-)= cot cot(-)=
9、 tan sin(+)= -cos cos(+)= sin tan(+)= -cot cot(+)= -tan sin(-)= -cos cos(-)= -sin tan(-)= cot cot(-)= tan (以上kZ) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用 Asin(t+)+ Bsin(t+) =sin三角函数公式证明(全部)公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b|
10、 -|a|a|a| 一元二次方程的解-b+(b2-4ac)/2a -b-b+(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac0 注:方程有一个实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h 正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h 圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抵押合同六8篇
- 伸缩门采购合同合同
- 新零售模式下智慧物流配送优化策略
- 洒水车合同5篇
- 商业保密协议书十
- 公司员工保底协议
- 2025年贵港货运资格证培训考试题
- 2025年宁夏货车从业资格证答题软件
- 陶瓷插芯市场分析及竞争策略分析报告
- 珠光材料市场分析及竞争策略分析报告
- berg平衡评定量表
- 中央空调维保方案
- EPC总承包项目财务管理要点
- 一年级下学期开学家长会
- 发动机飞轮壳加工工艺及其夹具设计
- 中国控制会议论文模板英文
- 前厅罗盘系统操作细则
- 迅达扶梯9300AE故障代码
- 二年级下册数学课件-第三单元 对称图形 ppt(29张) 北京版(2021秋)
- 六十四卦爻象全图(彩色)(共6页)
- 《各种各样的桥》ppt课件
评论
0/150
提交评论