版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、专题突破四用两种概型计算时的几个关注点 第三章概率 一、关注基本事件的有限性和等可能性 思维切入将基本事件列出来,分析是否有限和等可能. 例1袋中有大小相同的3个白球,2个红球,2个黄球,每个球有一个区别于其 他球的编号,从中随机摸出一个球. (1)把每个球的编号看作一个基本事件建立的概率模型是不是古典概型? 解因为基本事件个数有限,而且每个基本事件发生的可能性相同,所以是 古典概型. (2)把球的颜色作为划分基本事件的依据,有多少个基本事件?以这些基本事 件建立的概率模型是不是古典概型? 解把球的颜色作为划分基本事件的依据,可得到“取得一个白球”“取得 一个红球”“取得一个黄球”,共3个基本
2、事件.这些基本事件个数有限,但 “取得一个白球”的概率与“取得一个红球”或“取得一个黄球”的概率不 相等,即不满足等可能性,故不是古典概型. 点评只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两 个条件只要有一个不满足就不是古典概型. 跟踪训练1一个口袋内装有大小相等的1个白球和已有不同编号的三个黑球, 从中任意摸出2个球. (1)共有多少个不同的基本事件,这样的基本事件是否为等可能的?该试验是 古典概型吗? 解任意摸出两球,共有白球和黑球1,白球和黑球2,白球和黑球3, 黑球1和黑球2,黑球1和黑球3,黑求2和黑球36个基本事件. 因为4个球的大小相同,所以摸出每个球是等可能的,
3、故6个基本事件都是等 可能事件. 由古典概型定义知,这个试验是古典概型. (2)摸出的两个球都是黑球记为事件A,问事件A包含几个基本事件? 解从4个球中摸出2个黑球包含3个基本事件.故事件A包含3个基本事件. (3)计算事件A的概率. 解因为试验中基本事件总数n6,而事件A包含的基本事件数m3. 二、关注基本事件的计算,做到不重不漏 例2一只口袋内装有5个大小相同的球,白球3个,黑球2个,从中一次摸出2 个球. (1)共有多少个基本事件? 思维切入将结果一一列举,再计算基本事件数. 解方法一(列举法) 分别记白球为1,2,3号,黑球为4,5号,则所有的基本事件如下:1,2,1,3, 1,4,1
4、,5,2,3,2,4,2,5,3,4,3,5,4,5,共10个(其中1,2 表示摸到1号球和2号球). 方法二(列表法) 设5个球的编号分别为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表 如下: abcde aa,ba,ca,da,e bb,ab,cb,db,e cc,ac,bc,dc,e dd,ad,bd,cd,e ee,ae,be,ce,d 由于每次取2个球,每次所取2个球不相同,而摸到b,a与a,b是相同的 事件,故共有10个基本事件. (2)“2个都是白球”包含几个基本事件? 解方法一(列举法) 由(1)中知,“2个都是白球”包含1,2,1,3,2,3,共3个基本事件.
5、 方法二(列表法) 由(1)中知,“2个都是白球”包含a,b,b,c,a,c,共3个基本事件. 点评计算基本事件的个数时,要做到不重不漏,就需要按一定程序操作, 如列举法,列表法,还可以用树状图法求解. 跟踪训练2从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率: (1)A三个数字中不含1和5; 解这个试验的所有可能结果为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5), (1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种. (2)B三个数字中含1或5. 解事件B的所有可能结果为:(1,2,3),(1,2
6、,4),(1,2,5),(1,3,4),(1,3,5), (1,4,5),(2,3,5),(2,4,5),(3,4,5),共9种. 三、关注事件间的关系,优化概率计算方法 例3有3个完全相同的小球a,b,c,随机放入甲、乙两个盒子中,求两个盒 子都不空的概率. 思维切入先分析三个小球随机放入甲、乙两个盒子的基本事件,再确定两 个盒子都不空的对立事件是至少有一个盒子为空所包含的事件,从而确定该 事件的概率. 解a,b,c三个小球随机放入甲、乙两个盒子的基本事件为: 两个盒子都不空的对立事件是至少有一个盒子为空,所包含事件:甲盒子a, b,c,乙盒子空;甲盒子空,乙盒子a,b,c,共2个, 甲盒a
7、,b,ca,baa,cb,cbc空 乙盒空cb,cbac,aa,ba,b,c 点评在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和 事件,由公式P(A1A2An)P(A1)P(A2)P(An)求得或采用正难则 反的原则,转化为其对立事件,再用公式P(A)1P()求得. 跟踪训练3袋中有红、黄、白3种颜色的球各1只,从中任取1只,有放回地 抽取3次,求3只颜色不全相同的概率. 解记“3只颜色全相同”为事件A,则所求事件为A的对立事件.因为“3只颜 色全相同”又可分为“3只全是红球(事件B)”,“3只全是黄球(事件C)”, “3只全是白球(事件D)”,且它们彼此互斥, 故3只颜色全相同
8、即为事件BCD, 由于红、黄、白球的个数一样,基本事件的总数为27, 四、关注事件的测度,规避几何概型易错点 例4(1)在RtABC中,A90,ABAC,过点A作一射线交线段BC于点 M,求BMAB的概率; 解记“过点A作一射线交线段BC于点M,使BMAB”为事件, 由于是过点A作一射线交线段BC于点M,所以射线在BAC内是等可能出现的, 又当ABBM时BAM67.5, 思维切入“过点A作一射线”等可能地分布在BAC内,测度为角度. (2)在RtABC中,A90,ABAC,在线段BC上取一点M,求BMAB的 概率. 设“在线段BC上取一点M,使BMAB”为事件, 思维切入“在线段BC上取一点M
9、”,等可能地分布在线段BC上,测度为长度. 点评当试验是“过点A作一射线”时,用角度作测度;当试验是“在线段 BC上取一点”时,用线段长度作测度.一般地,试验是什么,可以确定基本事 件是什么.基本事件累积起来,就可以确定区域是角度、长度还是面积等. 跟踪训练4(1)如图,在单位圆O的某一直径上随机的取一点Q,求过点Q且与 该直径垂直的弦长长度不超过1的概率. 因为Q点在直径AB上是随机的, 设事件A为“弦长长度超过1”, (2)设A为单位圆O圆周上一点,在圆周上等可能地任取一点B与A连接,则弦长 超过的概率是_. 即为AOB的度数大于90,而小于270. 12345 1.在一个袋子中装有分别标
10、注数字1,2,3,4,5的五个小球,这些小球除标注的数 字不同外其他完全相同.现从中随机取出2个小球,则取出的小球标注的数字之 和为3或6的概率是 6 达标检测 DABIAOJIANCEDABIAOJIANCE 解析随机取出2个小球得到的结果有10种,取出的小球标注的数字之和为3或 6的结果为1,2,1,5,2,4,共3种,所以P,故选A. 123456 2.从集合a,b,c,d,e的所有子集中任取一个,则这个集合恰是集合a,b, c的子集的概率是 解析集合a,b,c,d,e共有2532(个)子集,而集合a,b,c的子集有23 8(个), 123456 3.盒子里有25个外形相同的球,其中有1
11、0个白球,5个黄球,10个黑球,从盒 子中任意取出一球,已知它不是白球,则它是黑球的概率为 解析试验发生包含的事件是从盒子中取出一个不是白球的小球,共有510 15(种)结果, 满足条件的事件是取出的球是一个黑球,共有10种结果, 123456 4.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽 取一个数记为b,则“ 不是整数”的概率为_. 解析在1,2,3,4四个数中随机地抽取一个数记为a, 再在剩余的三个数中随机地抽取一个数记为b, 基本事件总数n4312. 123456 5.在区间0,2中随机地取出两个数,求两数之和小于1的概率. 解设x,y表示所取的任意两个
12、数, 由于x0,2,y0,2, 以两数x,y为坐标的点在以2为边长的正方形区域内, 设“两数和小于1”为事件A,则事件A所在区域为直线xy1的下方且在正方 形的区域内,设其面积为S. 123456 6.已知关于x的二次函数f(x)ax2bx1,设集合P1,2,3,Q1,1,2,3,4, 分别从集合P和Q中随机取一个数a和b得到数对(a,b). (1)列举出所有的数对(a,b),并求函数yf(x)有零点的概率; 解(a,b)有(1,1),(1,1),(1,2),(1,3),(1,4),(2,1),(2,1),(2,2), (2,3),(2,4),(3,1),(3,1),(3,2),(3,3),(3,4),共15种情况. 函数yf(x)有零点等价于b24a0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省聊城市文苑中学2025届数学高一上期末考试试题含解析
- 商洛市重点中学2025届高三英语第一学期期末达标检测试题含解析
- 落花生的课件教学
- 山西省山大附中2025届数学高三上期末统考模拟试题含解析
- 2025届浙江省宁波四中高一生物第一学期期末学业水平测试试题含解析
- 2025届四川省教考联盟高二上数学期末统考模拟试题含解析
- 2025届徐州市高二生物第一学期期末学业水平测试模拟试题含解析
- 2025届湖北省黄冈市重点名校生物高三第一学期期末统考试题含解析
- 2024年煤矿安全管理人员(一通三防作业)理论考试题库(含答案)
- 数学小故事课件
- 全国2013版有色金属工业尾矿工程预算定额交底及实操应用讲解
- 外墙涂料劳务合同
- 移动商务内容运营(吴洪贵)项目三 移动商务运营内容的策划和生产
- 大学办公室管理制度公司管理制度
- 35KV集电线路首次送电启动方案
- 画法几何及水利土建制图习题答案
- 临床流行病学智慧树知到答案章节测试2023年南方医科大学
- 2021年高考浙江卷英语试题(含答案)
- 幼儿园教师职业道德第七单元
- GB/T 5530-2005动植物油脂酸值和酸度测定
- GB/T 14194-2017压缩气体气瓶充装规定
评论
0/150
提交评论