版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、9 9. .7 7抛物线抛物线 -2- 知识梳理考点自测 1.抛物线的定义 平面内与一个定点F和一条定直线l(l不经过点F)的_ 的点的轨迹叫做抛物线.点F叫做抛物线的,直线l叫做抛物 线的. 2.抛物线的标准方程 (1)顶点在坐标原点,焦点在x轴正半轴上的抛物线的标准方程为 ; (2)顶点在坐标原点,焦点在x轴负半轴上的抛物线的标准方程为 ; (3)顶点在坐标原点,焦点在y轴正半轴上的抛物线的标准方程为 ; (4)顶点在坐标原点,焦点在y轴负半轴上的抛物线的标准方程为 . 距离相等 焦点 准线 y2=2px(p0) y2=-2px(p0) x2=2py(p0) x2=-2py(p0) -3-
2、 知识梳理考点自测 3.抛物线的几何性质 (0,0) y=0 x=0 -4- 知识梳理考点自测 1 -5- 知识梳理考点自测 1.设AB是过抛物线y2=2px(p0)焦点F的弦,若A(x1,y1),B(x2,y2),如图 所示,则 (4)以AB为直径的圆与准线相切. (5)CFD=90. -6- 知识梳理考点自测 2.设P(x0,y0)为圆锥曲线C:Ax2+Bxy+Cy2+Dx+Ey+F=0上的任意一 点,则过点P的切线方程为 3.抛物线y2=2px(p0)的通径长为2p. -7- 知识梳理考点自测23415 1.判断下列结论是否正确,正确的画“”,错误的画“”. (1)平面内与一个定点F和一
3、条定直线l的距离相等的点的轨迹一 定是抛物线.() (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( ) (3)若一抛物线过点P(-2,3),则其标准方程可写为y2=2px(p0).( ) (4)抛物线既是中心对称图形,又是轴对称图形.() (5)方程y=ax2(a0)表示的曲线是焦点在x轴上的抛物线,且其焦点 坐标是 答案 答案 关闭 (1)(2)(3)(4)(5) -8- 知识梳理考点自测23415 2.(2017江西新余一中模拟七,理5)已知抛物线y=ax2(a0)的焦点 到准线距离为1,则a=() A.4B.2 答案解析解析 关闭 答案解析 关闭 -9- 知识梳理考点自测2
4、3415 答案解析解析 关闭 答案解析 关闭 -10- 知识梳理考点自测23415 4.动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为 . 答案解析解析 关闭 设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x=-1的距离相 等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x. 答案解析 关闭 y2=4x -11- 知识梳理考点自测23415 5.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30的直线交抛物 线C于A,B两点,O为坐标原点,则OAB的面积为. 答案解析解析 关闭 答案解析 关闭 -12- 考点1考点2考点3考点4考点5 例1(1)(
5、2017安徽模拟)过抛物线y2=4x的焦点F的直线交该抛物线 于A,B两点,O为坐标原点.若|AF|=3,则AOB的面积为() (2)(2017辽宁大连双基测试)若抛物线y2=4x上一点P到其焦点F的 距离为2,O为坐标原点,则OFP的面积为() 答案解析解析 关闭 答案解析 关闭 -13- 考点1考点2考点3考点4考点5 思考如何灵活应用抛物线的定义解决距离问题? 解题心得解题心得1.由抛物线定义,把抛物线上点到焦点距离与到准线距 离相互转化. 2.注意灵活运用抛物线上一点P(x,y)到焦点F的距离 -14- 考点1考点2考点3考点4考点5 对点训练对点训练1(1)(2017河南濮阳一模)抛
6、物线y2=2px(p0)的焦点为 圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于 M,N两点,则|MN|=() A.30 B.25C.20 D.15 答案解析解析 关闭 答案解析 关闭 -15- 考点1考点2考点3考点4考点5 例2(1)(2017安徽合肥一模)已知双曲线 -x2=1的两条渐近线分 别与抛物线y2=2px(p0)的准线交于A,B两点,O为坐标原点,若 OAB的面积为1,则p的值为() (2)(2017宁夏石嘴山第三中学模拟)如图,过抛物线y2=2px(p0)的 焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且 |AF|=3,则抛物线
7、的方程为() 答案: (1)B(2)D -16- 考点1考点2考点3考点4考点5 -17- 考点1考点2考点3考点4考点5 -18- 考点1考点2考点3考点4考点5 思考求抛物线标准方程的常用方法和关键是什么? 解题心得解题心得1.求抛物线的标准方程主要利用待定系数法,因为抛物 线方程有四种形式,所以在求抛物线方程时,需先定位,再定量,必要 时要进行分类讨论.标准方程有时可设为y2=mx或x2=my(m0). 2.抛物线几何性质的确定,由抛物线的方程可以确定抛物线的开 口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的 焦点坐标及准线方程. -19- 考点1考点2考点3考点4考点5 对
8、点训练对点训练2(1)(2017宁夏银川模拟)直线l过抛物线x2=2py(p0)的 焦点,且与抛物线交于A,B两点,若线段AB的长是6,AB的中点到x轴 的距离是1,则此抛物线方程是() A.x2=12yB.x2=8y C.x2=6yD.x2=4y (2)(2017广西玉林、贵港一模)已知椭圆 与抛物线 y2=2px(p0)交于A,B两点,|AB|=2,则p=. 答案解析解析 关闭 答案解析 关闭 -20- 考点1考点2考点3考点4考点5 (2)(2017全国,理10)已知F为抛物线C:y2=4x的焦点,过F作两 条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E
9、两点,则|AB|+|DE|的最小值为() A.16 B.14 C.12 D.10 答案: (1)C(2)A -21- 考点1考点2考点3考点4考点5 -22- 考点1考点2考点3考点4考点5 -23- 考点1考点2考点3考点4考点5 -24- 考点1考点2考点3考点4考点5 思考求与抛物线有关的最值问题的一般思路是怎样的? 解题心得解题心得与抛物线有关的最值问题的两个转化策略 转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的 距离,构造出“两点之间线段最短”,使问题得以解决. 转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离, 利用“与直线上所有点的连线中垂线段最短”原理解决.
10、 -25- 考点1考点2考点3考点4考点5 对点训练对点训练3(1)(2017江西赣州模拟)若点A的坐标为(3,2),F是抛物 线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的 点M的坐标为() (2)(2017河北邢台摸底)已知M是抛物线x2=4y上一点,F为其焦点, 点A在圆C:(x+1)2+(y-5)2=1上,则|MA|+|MF|的最小值是 . 答案解析解析 关闭 (1)过点M作抛物线y2=2x左准线的垂线,垂足是N(图略),则 |MF|+|MA|=|MN|+|MA|,当A,M,N三点共线时,|MF|+|MA|取得最小值,此时 点M的坐标为(2,2). (2)依
11、题意,由点M向抛物线x2=4y的准线l:y=-1作垂线,垂足为M1(图略),则 有|MA|+|MF|=|MA|+|MM1|,则|MA|+|MM1|的最小值等于圆心C(-1,5)到 y=-1的距离再减去圆C的半径,即等于6-1=5,因此|MA|+|MF|的最小值是5. 答案解析 关闭 (1)D(2)5 -26- 考点1考点2考点3考点4考点5 例4(1)设抛物线y2=4x的焦点为F,准线为l,已知点C在l上,以C为圆 心的圆与y轴的正半轴相切于点A,若FAC=120,则圆的方程为 . (2)在平面直角坐标系xOy中,双曲线 (a0,b0)的右支 与焦点为F的抛物线x2=2py(p0)交于A,B两
12、点,若|AF|+|BF|=4|OF|, 则该双曲线的渐近线方程为. -27- 考点1考点2考点3考点4考点5 -28- 考点1考点2考点3考点4考点5 -29- 考点1考点2考点3考点4考点5 思考求解抛物线与其他圆锥曲线的小综合问题要注意什么? 解题心得解题心得求解抛物线与其他圆锥曲线的小综合问题,要注意距离 的转换,将抛物线上的点到焦点的距离转换成抛物线上的点到准线 的距离,这样可以简化运算过程. -30- 考点1考点2考点3考点4考点5 对点训练对点训练4(1)设抛物线C:y2=2px(p0)的焦点为F,点M在C 上,|MF|=5,若以MF为直径的圆过点(0,2),则抛物线C的方程为()
13、 A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x (2)(2017山西太原二模)已知双曲线 -y2=1的右焦点是抛物线 y2=2px(p0)的焦点,直线y=kx+m与抛物线交于A,B两个不同的点, 点M(2,2)是AB的中点,则OAB(O为坐标原点)的面积是() 答案: (1)C(2)D -31- 考点1考点2考点3考点4考点5 -32- 考点1考点2考点3考点4考点5 -33- 考点1考点2考点3考点4考点5 例5(2017安徽安庆二模,理20)已知抛物线x2=2py(p0),F为其焦 点,过点F的直线l交抛物线于A,B两点
14、,过点B作x轴的垂线,交直线 OA于点C,如图所示. (1)求点C的轨迹M的方程; (2)直线m是抛物线的不与x轴重合的切线,切点为P,点C的轨迹M 与直线m交于点Q,求证:以线段PQ为直径的圆过点F. -34- 考点1考点2考点3考点4考点5 -35- 考点1考点2考点3考点4考点5 -36- 考点1考点2考点3考点4考点5 -37- 考点1考点2考点3考点4考点5 思考求解抛物线综合问题的一般方法是怎样的? 解题心得解题心得求解抛物线综合问题的方法 (1)研究直线与抛物线的位置关系与研究直线与椭圆、双曲线的 位置关系的方法类似,一般是用方程法,但涉及抛物线的弦长、中 点、距离等问题时,要注
15、意“设而不求”“整体代入”“点差法”以及定 义的灵活应用. (2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦 点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p(焦点在x轴正 半轴),若不过焦点,则必须用弦长公式. -38- 考点1考点2考点3考点4考点5 对点训练对点训练5(2017北京海淀区二模,理18)已知动点M到点N(1,0)和 直线l:x=-1的距离相等. (1)求动点M的轨迹E的方程; (2)已知不与直线l垂直的直线l与曲线E有唯一公共点A,且与直线 l的交点为P,以AP为直径作圆C.判断点N和圆C的位置关系,并证明 你的结论. -39- 考点1考点2考点3考点4考点5 解: (1)设动点M(x,y),则M的轨迹E是以N(1,0)为焦点,直线l:x=-1为准 线的抛物线,所以轨迹E的方程为y2=4x. (2)点N在以PA为直径的圆C上.证明如下: 由题意可设直线l:x=my+n, 因为直线l与曲线E有唯一公共点A, 所以=16m2+16n=0,即n=-m2. 所以(*)可化简为y2-4my+4m2=0. 所以A(m2,2m). 所以NANP,所以点N在以PA为直径的圆C上. -40- 考点1考点2考点3考点4考点5 1.认真区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆虫涂色课程设计
- 拒绝浪费粮食的宣传横幅标语(125句)
- 护士一周工作总结模板
- 文化基础课程设计
- 心痛感言30句范文
- 拒绝浪费粮食倡议书范文(7篇)
- 化工课程设计精馏塔序言
- 奥创中心小班课程设计
- 2024年标准化合作社运营合同模板版B版
- 2025年山东淄博沂源县教体系统事业单位紧缺教师招聘30人历年管理单位笔试遴选500模拟题附带答案详解
- 双桥静力触探分层统计及承载力表0421
- 形势任务教育宣讲材料第一讲——讲上情
- 八卦五行-PPT课件
- ISO8573-2测定悬浮状油含量的试验方法学习资料
- 中国地质大学(武汉)教育发展基金会筹备成立情况报告
- 薪酬管理试卷及答案
- 大学无机及分析化学----气体练习题及答案
- 保险行业新会计准则实施指南征求意见稿
- 形式发票模板 PI模板 英文版
- 初一的最美的风景高分的作文600字
- 密封固化剂配方分析
评论
0/150
提交评论