下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、、判断下列说法是否正确(1)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两 者是一致的;F(2)线性规划模型中增加一个约束条件, 可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;T(3) 线性规划问题的每一个基解对应可行域的一个顶点;F(4)如线性规划问题存在最优解,则最优解一定对应可行域边界上 的一个点;T(5)对取值无约束的变量,通常令,其中,在用单纯形法得的最 优解中有可能同时出现;F(6)用单纯形法求解标准型式的线性规划问题时, 与 对应的变量都 可以被选作换入变量;T(7)单纯形法计算中,如不按最小比值原则选取换出变量,则在下 一个解中至少有一个基变量的值为
2、负; T(8)单纯形法计算中,选取最大正检验数 对应的变量作为换入变量, 将使目标函数值得到最快的增长;F(9)一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;T(10)线性规划问题的任一可行解 都可以用全部基可行解的线性组合 表示;T(11)若 分别是某一线性规划问题的最优解,则 也是该线性规划问 题的最优解,其中为正的实数;F(12)线性规划用两阶段法求解时,第一阶段的目标函数通常写为 但也可写为,只要所有均为大于零的常数;T(13)对一个有n个变量、m个约束的标准型的线性规划问题,其可 行域的顶点恰好为;F(14)单纯形法的迭代计算过程
3、是从一个可行解转换到目标函数值更 大的另一个可行解;F(15)线性规划问题的可行解如为最优解, 则该可行解一定是基可行 解; F(16)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解;F(17)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优。T第二章对偶理论与灵敏度分析(1)任何线性规划问题存在并具有唯一的对偶问题;T(2)对偶问题的对偶问题一定是原问题;T(3)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;F(4) 设 分别为标准形式的原问
4、题与对偶问题的可行解,分别为其 最优解,则恒有;T(5)若线性规划的原问题有无穷多最优解,则其对偶问题也一定有 无穷多最优解;F(6)已知 为线性规划的对偶问题的最优解,若 ,说明在最优生产 计划中第i种资源已完全耗尽;T(7)若某种资源的影子价格等于k,在其他条件不变的情况下,当 该种资源增加5个单位时,相应的目标函数值将增大 5k; F(8) 应用对偶单纯形法计算时,若单纯形表中某一基变量,又所在行的元素全部大于或等于零,则可以判断其对偶问题具有无界解。T第三章运输问题(1)运输问题是一种特殊的线性规划模型,因而求解结果也可能出 现下列四种情况之一;有唯一最优解,有无穷多最优解,无界解,无
5、 可行解;F(2)在运输问题中,只要任意给出一组含(m+n-1)个非零的,且 满足,就可以作为一个初始基可行解;F(3) 表上作业法实质上就是求解运输问题的单纯形法;T(4)按最小元素法(或沃格尔法)给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路;T(5)如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k,最优调运方案将不会发生变化;T(6)如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k,最优调运方案将不会发生变化;F(7)当所有产地产量和销地销量均为整数值时,运输问题的最优解 也为整数值。F第四章目标规划(1) 线性规划问题是目标规划问题的
6、一种特殊形式;T(2) 正偏差变量应取正值,负偏差变量应取负值;F(3)目标规划模型中,应同时包含系统约束(绝对约束)与目标约束; F(4)当目标规划问题模型中存在 的约束条件,则该约束为系统约束。第五章整数规划1、判断:(1)整数规划解的目标函数值一般优于其相应的线性规划问题的解 的目标函数值;F(2)用分枝定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界;T(3)用分枝定界法求解一个极大化的整数规划问题时,当得到多于 一个可行解时,通常可任取其中一个作为下界值,再进行比较剪枝; F(4)指派问题效率矩阵的每个元素都乘上同一个常数 k,将不影响 最优指派方案;F(5)指派问题数学模型的形式同运输问题十分相似,故也可以用表 上作业法求解;T(6)求解0-1规划的隐枚举法是分枝定界法的特例;T(7)分枝定界法在需要分枝时必须满足:一是分枝后的各子问题必须容易求解;二是各个子问题解的集合必须覆盖原问题的解。T第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度股权质押资产重组合同示范文本3篇
- 二零二五年度钢材仓储物流服务合同9篇
- 二零二五年度路灯照明设施安全检测合同样本2篇
- 二零二五年度:劳动合同法实务操作与案例分析合同3篇
- 二零二五年度船舶建造与设备安装合同2篇
- 二零二五年度农产品质量检测合同范本3篇
- 二零二五年度安置房买卖合同电子支付与结算规范3篇
- 3、2025年度绿色出行接送机服务合同范本2篇
- 二零二五年度文化创意产业合作开发合同范本3篇
- 家里陪护合同(2篇)
- 2024-2025学年五年级科学上册第二单元《地球表面的变化》测试卷(教科版)
- 小区物业服务投标方案(技术标)
- 2024-2030年中国光电干扰一体设备行业发展现状与前景预测分析研究报告
- 2025届高考数学一轮复习建议-函数与导数专题讲座课件
- 心电图基本知识
- 中煤电力有限公司招聘笔试题库2024
- 消防接警员应知应会考试题库大全-上(单选、多选题)
- 2024风电场在役叶片维修全过程质量控制技术要求
- 湖南省岳阳市岳阳楼区2023-2024学年七年级下学期期末数学试题(解析版)
- 自适应噪声抵消技术的研究
- 山东省临沂市罗庄区2024届中考联考化学试题含解析
评论
0/150
提交评论