




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学八年级数学下下 新课标新课标人人 第十八章平行四边形第十八章平行四边形 学习新知学习新知检测反馈检测反馈 18.1.2平行四边形的判定平行四边形的判定 (第(第3课时)课时) 为了测量一个池塘的宽BC,在池塘一侧的平地上选一 点A,再分别找出线段AB,AC的中点D,E,若测出DE的长,就能 求出池塘的宽BC,你知道为什么吗?今天这堂课我们就来探 究其中的学问. 观察思考观察思考 如图,D,E分别是AB,AC的中点,连接DE,像DE 这样,连接三角形两边中点的线段叫做三角形的 中位线. 学学 习习 新新 知知 D,E分别为AB,AC的中点, DE为ABC的中位线. 三角形有几条中位线?
2、你能画出来吗? 三角形中有三条中位线 DE为ABC的中位线, D,E分别为AB,AC的中点. 说出三角形的中位线与中线有何相同点和 不同点. 相同之处:都是和边的中点有关的线段. 不同之处:三角形中位线的两个端点都是边的中 点;三角形中线只有一个端点是边的中 点,另一端点是三角形的顶点. 思考思考 探索:如图,三角形的中位线DE与BC有什么 样的关系?为什么? 猜想:DEBC 2DE=BC 你能证明以上猜想吗? 思考思考 已知:如图,点D,E分别为ABC边AB,AC的中点. 求证:DEBC且DE= BC. 解析所证明的结论既有位置关系,又有数量关系,联想已 学过的知识,可以把要证明的内容转化到
3、一个平行四边形中,利 用平行四边形的对边平行且相等的性质来证明结论成立,从而使 问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 1 2 如图,延长DE到F,使EF=DE,连接CF, 由题意易得ADE CFE, 从而可得ADFC,且AD=FC,因此 有BDFC,BD=FC, 所以四边形BCFD是平行四边形. 所以DFBC,DF=BC,由作图知2DE=DF ,所以DEBC且2DE=BC. 方法二: 如图,延长DE到F,使EF=DE,连接CF,CD和AF, 因为AE=EC,所以四边形ADCF是平行四边形. 所以ADFC,且AD=FC.因为AD=BD,所以 BDFC,且BD=FC.所以四边形
4、BCFD是平行 四边形.所以DFBC,且DF=BC,因为2DE=DF, 所以DEBC且2DE=BC. 方法三: 如图,过E点作AB的平行线交BC于N,交过A点 与BC平行的直线于M,由题意及作图易知 AEM CEN,可得ME=EN,AM=CN,因为 AMBC,ABMN,所以四边形AMNB是平行四 边形,所以AB=MN,AM=BN.又因为 2BD=AB,2EN=MN,所以BD=EN,所以四边形 BDEN是平行四边形,则DE=BN,DEBC,所以 DE=BN=AM=CN,即2DE=BC. 方法四: 如图,过A,B,C三点分别作DE的垂线,分别交直 线DE于点P,M,N. 因为AP,BM,CN都垂直
5、于DE, 所以APBMCN.可证明APE CNE,则 AP=CN,PE=EN,ADP BDM,则 AP=BM,MD=DP,所以BM=CN,2DE=MN,所以 四边形BMNC是平行四边形,所以 DEBC,2DE=MN=BC. 小结小结 三角形中位线的性质:三角形的中位线平行于三 角形的第三边,并且等于第三边的一半. D,E分别是AB,AC的中点, DEBC,DE= BC. 1 2 知识拓展知识拓展 (1)三角形的中位线所构成的三角形的周长是三角形的中位线所构成的三角形的周长是 原三角形周长的一半原三角形周长的一半. (2)三角形三条中位线可以把三角形分成三个三角形三条中位线可以把三角形分成三个
6、平行四边形平行四边形,分成的四个三角形全等分成的四个三角形全等. (3)三角形三条中位线所构成的三角形的面积三角形三条中位线所构成的三角形的面积 等于原三角形面积的四分之一等于原三角形面积的四分之一. 例: (补充)如图,ABC的中位线DE=5 cm,把ABC 沿DE折叠,使点A落在边BC上的点F处,若A,F两点间的距离 是8 cm,求ABC的面积. 解:连接AF,如图所示.DE是ABC的中位线, BC=2DE=10 cm,DEBC. 由折叠可知AFDE,AFBC, AF是ABC的边BC上的高. AF=8 cm, SABC= BCAF= 108=40(cm2). 归纳拓展本题还可以这样解:AB
7、C的面积是四边形 ADFE面积的2倍,而四边形ADFE的对角线互相垂直,因此它的面 积等于对角线乘积的一半,所以ABC的面积等于AFDE. 1 2 1 2 例: (补充)如图,在四边形ABCD中,E,F,G,H分别是 AB,BC,CD,DA的中点.求证四边形EFGH是平行四边形. 解析因为已知点E,F,G,H分别是线段的中点,所以可以设法 应用三角形中位线性质找到四边形EFGH的边之间的关系.由于 四边形的一条对角线可以把四边形分成两个三角形,所以考虑添 加辅助线,连接AC或BD,构造含有三角形中位线的基本图形后,此 题便可得证. 证明:连接AC,如图所示. 在DAC中,AH=HD,CG=GD
8、, HGAC,HG= AC(三角形中位线性质). 同理可得EFAC,EF= AC. HGEF,且HG=EF. 四边形EFGH是平行四边形. 1 2 1 2 归纳总结顺次连接四边形四条边的中点,所得的四边 形是平行四边形. 课堂小结课堂小结 三角形的中位线的定义:连接三角形两边中 点的线段叫做三角形的中位线. 两层含义:如图, D,E分别为AB,AC的中点, DE为ABC的中位线; DE为ABC的中位线, D,E分别为AB,AC的中点. 三角形中位线的性质: 三角形的中位线平行于三角形的第三边,并且等 于第三边的一半. 特点:在一个题设下,有两个结论.一个表示位置关 系,另一个表示数量关系. 结
9、论:有两个,一个表明中位线与第三边的位置关 系,另一个表明中位线与第三边的数量关系. 三角形中位线的性质:三角形的中位线平行于第三 边并且等于第三边的一半. D,E分别是AB,AC的中点,DEBC, DE=BC. 作用:在已知两边中点的条件下,证明线段的平行 关系及线段的倍分关系. 1 2 检测检测反馈反馈 1.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC和BC,并分 别找出AC和BC的中点M,N,如果测得MN=20 m,那么A,B两点间 的距离是m, 理由是 . 解析解析:因为M,N分别是AC和BC的 中点,所以2MN=AB,所以 AB=2MN=40 m.理由是:三角形的 中位线平
10、行于三角形的第三边, 并且等于第三边的一半. 40 三角形的中位线平行于三角形的第三边,并且等于第三边的一半 2.RtABC中,C=90,AB=10,AC=8,BC=6,点D,E,F分别是 ABC三边的中点,则DEF的周长是,面积是 . 解析解析:DEF的三条边分别是RtABC的三条中位线,所以 DEF的三条边长分别是RtABC的三边长的一半,所以 DEF的周长是RtABC的周长的一半,ABC的周长是24, 则DEF的周长是12.三角形的三条中位线在三角形中可以 构成三个平行四边形和四个全等的三角形,所以DEF的面 积是RtABC的面积的四分之一,ABC的面积= 8 6=24,因此DEF的面积
11、为6. 12 6 1 2 ACBC 1 2 3.如图,ABC中,D,E,F分别是AB,AC,BC的中点. (1)若EF=5 cm,则AB=cm;若BC=9 cm,则 DE=cm. 解:D,E,F分别是AB,AC,BC的中点, DE= BC,EF= AB,且EFAB, AB=2EF=10 cm,DE= BC=4.5 cm. 1 2 1 2 1 2 10 4.5 (2)中线AF与中位线DE有什么特殊的关系? 证明你的猜想. 解:AF与DE互相平分.证明如下: 连接DF,如图所示, D为AB的中点,AD=BD= AB, 由(1)知EF= AB,EFAB, AD=EF, 四边形ADFE是平行四边形. AF与DE互相平分. 1 2 1 2 4.如图,E,F,G,H分别是AB,BC,CD,DA的中 点.求证四边形EFGH是平行四边形. 证明:连接AC,如图所示, G,H分别是CD,AD的中点, 2GH=AC,且GHAC, E,F分别是AB,BC的中点, 2EF=AC,且EFAC, EF=GH,EFGH, 四边形EFGH是平行四边形. 学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心、吊带
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经济法概念辨析试题及答案
- 财务成本管理短期应对试题及答案
- 计算机二级MySQL多语言支持试题及答案
- 2025年计算机二级MySQL技巧分享试题及答案
- 高效复习计算机二级试题及答案指南
- 财务成本管理课程的教学重心试题及答案
- 高效WPS运用试题及答案归纳
- 现代汉语语感培养试题及答案
- 2025年计算机二级Delphi知识点記錄試题及答案
- 计算机基础二级试题及答案发掘
- 2024年小学语文教师招聘考试语文专业知识考试模拟试题及答案(共四套)
- 巴金名著导读《激流三部曲》
- 应急管理与突发事故处理
- 吸烟与肺结核双重危害的防范
- 石油开采业的大数据应用与数据分析
- 螺杆泵工作原理课件
- 中医护理方案实施难点与优化课件
- 中心静脉导管相关血流感染课件
- 新建铝厂可行性方案
- 风湿免疫疾病的患者教育和自我管理
- 电梯修理(T)实操考试题目
评论
0/150
提交评论