下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题 2.1 一元二次方程(二)1. 掌握因式分解法解一元二次方程的基本步骤 .课 时2. 会用因式分解法解一元二次方程 .教 学目 标【教学重点】用因式分解法解一元二次方程.教 学设 想【教学难点】 例 3 方程中含有无理系数,需将常数项2 看成,才能分解因式,是本节教学的难点 .教 学 程 序 与 策 略一. 复习引入1、将下列各式分解因式:教师指出:把一个多项式化成几个整式的积的形式叫做因式分解.2、你能利用因式分解解下列方程吗?请中等学生上来板演,其余学生写在练习本上,教师巡视 . 之后教师指出:像上面这种利用因式分解解一元二次方程的方法叫做因式分解法。 (板书课题)二. 新课学习1
2、、归纳因式分解法解一元二次方程的步骤:教师首先指出:当方程的一边为 0,另一边容易分解成两个一次因式的积时,用因式分解法求解方程比较方便 . 然后归纳步骤:(板书) 若方程的右边不是零,则先移项,使方程的右边为零; 将方程的左边分解因式; 根据若 MN=0,则 M=0或 N=0,将解一元二次方程转化为解两个一元一次方程。2、讲解例 2.(1)解下列一元二次方程:教师在讲解中不仅要突出整体的思想:把 x-2 及 3x-4 和 4x-3 看成整体,还要突出化归的思想:通过因式分解把一元二次方程转化为一元一次方程来求解.并且教师要认真板演,示范表述格式,强调两个一元一次方程之间的连结词要用“或”,而
3、不能用“且。(2)想一想:将第( 1),(2),(3)题的解分别代人原方程的左、右两边,等式成立吗?教 学 程 序 与 策 略(3)归纳用因式分解法解的一元二次方程的基本类型:先变形成一般形式,再因式分解:移项后直接因式分解 .在选择方法时通常可先考虑移项后能否直接分解因式, 然后再考虑化简后能否分解因式。讲解例 3.解方程在本例中出现无理系数,要注意引导学生将将常数项2 看成,另外对于方程中出现两个相等的根,教师要做好板书示范。3、补充例 4若一个数的平方等于这个数本身,你能求出这个数吗?首先让学生设出未知数,列出方程(),再让学生求解 . 根据学生的求解情况强调:对于此类方程不能两边同时约
4、去x,因为这里的三、巩固练习:课本第32 页课内练习。四、体会和分享能说出你这节课的收获和体验让大家与你分享吗?先由学生自由发言,教师再投影演示:1. 能用分解因式法来解一元二次方程的结构特点:方程的一边是x 可以是 0。0,另一边可以分解成两个一次因式的积;2. 用分解因式法解一元二次方程的一般步骤:(1)将方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积;(3)令每一个因式为零,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.3. 用分解因式法解一元二次方程的理论依据:两个因式的积为 0,那么这两个因式中至少有一个等于 0.4、用分解因式法解一元二次方程的注意点:1. 必须将方程的右边化为零;2. 方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文明单位创建工作报告
- 2025年度个人信用卡透支合同模板(全新修订)4篇
- 2025年度个人税务筹划与申报服务合同6篇
- 2025年度高端住宅个人出租服务合同样本4篇
- 2025年中国厦门外轮代理有限公司招聘笔试参考题库含答案解析
- 2025年河南东龙控股集团有限公司招聘笔试参考题库含答案解析
- 绵阳市二零二五年度长租公寓租赁管理合同4篇
- 2025年度购房合同霸王条款解析:购房者维权手册3篇
- 2025年江苏连云港市东海城投集团招聘笔试参考题库含答案解析
- 2025年版医疗废弃物无害化处置及资源化利用合同3篇
- 2025年病案编码员资格证试题库(含答案)
- 企业财务三年战略规划
- 提高脓毒性休克患者1h集束化措施落实率
- 山东省济南市天桥区2024-2025学年八年级数学上学期期中考试试题
- 主播mcn合同模板
- 新疆2024年中考数学试卷(含答案)
- 2024测绘个人年终工作总结
- DB11 637-2015 房屋结构综合安全性鉴定标准
- 制造业生产流程作业指导书
- DB34∕T 4444-2023 企业信息化系统上云评估服务规范
- 福建中闽能源股份有限公司招聘笔试题库2024
评论
0/150
提交评论