初一数学寒假专题——列方程、列不等式解应用题_第1页
初一数学寒假专题——列方程、列不等式解应用题_第2页
初一数学寒假专题——列方程、列不等式解应用题_第3页
初一数学寒假专题——列方程、列不等式解应用题_第4页
初一数学寒假专题——列方程、列不等式解应用题_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初一数学初一数学寒假专题寒假专题列方程、列不等式解应用题列方程、列不等式解应用题 【本讲教育信息本讲教育信息】 一. 教学内容: 寒假专题列方程、列不等式解应用题 二. 教学目标: 1. 通过此专题复习掌握列方程、列不等式解应用题的方法步骤。 2. 通过此专题复习,熟练地列方程、列不等式解决实际问题。 三. 本周重点难点: 重点:列方程解应用题、列不等式解应用题。 难点:有关解应用题中的综合性、决策性问题。 四. 本周知识要点: 1. 列方程或列不等式解应用题的关键是从问题中找出一个等量关系或不等 关系,恰当地设未知数,把相等的各个量或不等的各个量用已知数和未知数的 代数式表示,这样可列出方程

2、和不等式。 2. 列方程、列不等式解应用题的一般步骤 (1)审:审题。分析题中已知什么、未知什么、求什么、明确量之间关系。 (2)找:找出能够表示应用题全部含义的相等关系或不等关系。这一步要 抓住题中关键性语句。 (3)设:设未知数,一般求什么就设什么为 x,有时可间接设未知数,一 般设的时候要带单位。 (4)列:列方程或不等式,把相等关系或不等关系左右两边的量用含有未 知数的代数式表示出来。 (5)解:解所列出的方程不等式,求出未知数的值。 (6)答:检验所求解是否符合题意,是否符合实际,写出答案。 3. 列方程或不等式解应用题时要注意的几点 (1)设未知数和写答案时,一定要写清楚单位。 (

3、2)列方程或不等式时,两边所表示的量应该相同,并且单位要统一。 (3)对于求得的方程或不等式的解,还要看是否符合题意与实际情况。 (4)有时应用题解答需要分情况讨论,才能做决策。 【典型例题典型例题】 例 1. 现有甲、乙两项工程甲工程的工作量是乙工程的工作量的 2 倍,第一 组有 19 人,第 2 组 14 人(设每人工作效率相同),怎样调配两组的人数,才 能使两项工程同时开工又同时完工呢?(一种答案即可) 分析:分析:甲工程的工作量为乙工程的工作量的 2 倍,且人均工作效率相同, 所以甲工程需要的人数是乙工程需要的人数的 2 倍,第一组人数多于第二组人 数,但第一组人数不是第二组人数的 2

4、 倍,甲、乙工程的人数必须互相抽调, 可从第二组抽人数到第一组中去完成甲工程,也可从第一组抽调人数到第二组 中去做甲工程,但必有等量关系为:做甲工程的人数做乙工程的人数2。 解法一:解法一:设从第二组抽 x 人到第一组去完成甲工程,依题得: 答:答:从第二组抽 3 人去第一组做甲工程,第二组做乙工程。 解法二:解法二:设从第一组抽 y 人到第二组,由第二组做甲工程,依题意得 答答:从第一组抽 8 人到第二组做甲工程,第一组做乙工程。 说明:说明:做甲工程的人数还可以从第一组抽 18 人,第二组抽 4 人。 从第一组抽 17 人,第二组抽 5 人。 例 2. 一个长方形如图所示,恰分成六个正方形

5、, 其中最小的正方形的面积为 1cm2,求这个长方形的 面积。 分分析:析:本题要求长方形的面积,只要求出这个长方形的长与宽。这里只知 道最小的正方形的面积为 1cm2,即边长为 1cm。其他正方形边长、面积均为不 知道,如图(2)中,n 个正方形分别标以 a、b、c、d、e、f 可观察得到。 正方形 e 的边长正方形 f 的边长, 正方形 d 的边长正方形 e 的边长1, 正方形 c 的边长正方形 d 的边长1 正方形 b 的边长正方形 c 的边长1, 原长方形的长正方形 e、f、d 的边长和 原长方形的宽正方形 d、c 的边长和 原长方形的长正方形 b 的边长正方形 c 的边长正方形 d

6、的边长2 正方形 c 的边长 即原长方形的长正方形 d、c 的边长和2原长方形宽2 正方形 a、b、c、d、e、f 的边长都有联系,设正方形 e 的边长为 xcm 求出 x,其他的边长,长方形长、宽可求出,面积可求出。 解:解:设正方形 e 的边长为 xcm,则原长方形的长为(3x1)cm 宽为(x1x11)cm 依题得 解之 x4,则 3x113,x1x1111 所以长方形面积1311143 答:答:这个长方形面积为 143cm2。 说明:说明:此题采用了间接设未知数的办法,通过图形观察、分析找到等量关 系,才列出方程。 例 3. 一个两位数,十位上的数比个位上的数小 1,十位与个位上的数的

7、和是 这个两位数的,求这个两位数。 分析:分析:本题的等量关系为“十位与个位上的数的和是这个两位数的”求 两位数不能直接设两位数,而要先设个位数为 x,则十位数为(x1),这个 两位数可表示为:10(x1)x 解:解:设个位数字为 x,则十位上的数为(x1),依题得 答:答:这个两位数为 45。 说明:说明:此题也是间接设未知数,要注意两位数的大小是如何表示的。 例 4. 在知识竞赛的预选赛中共有 20 道题,对于每一道题答对得 10 分,答 错或不答扣 5 分,总得分不少于 80 分者通过预选赛,小明通过预选赛,小明可 能答对了多少道题? 分析:分析:抓住“不少于 80 分”这个关键语句,可

8、以找到一个不等关系:“小 明的得分大于或等于 80 分”,设小明答对 x 道题,则小明的得分可表示为: 10 x5(20 x) 解:解:设小明答对 x 道题,依题得: 取满足题意的整数解:12,13,14,15,16,17,18,19,20。 答:答:小明可能答对了 12 或 13 或 14 或 15 或 16 或 17 或 18 或 19 或20 道题。 说明:说明:此应用题作答时要注意用词恰当。 例 5. 某童装加工企业今年五月份工人每人平均加工童装 150 套,最不熟练 的工人加工的童装为平均套数的 60%,为了提高工人的积极性,按时完成外商 订货,企业计划从六月份起进行工资改革,改革后

9、每位工人的工资分二部分: 一部分为每人月基本工资 200 元,另一部分为每加工一套童装奖励若干元。 (1)为了保证所有工人的每月工资收入不低于市有关部分规定的最低工资 标准 450 元,按五月份工人加工的童装的套数计算,工人每加工 1 套童装企业 至少奖励多少元?(精确到分) (2)根据经营情况,企业决定每加工 1 套童装奖励 5 元,工人小张争取六 月份工资不少于 1200 元,问小张在六月份应至少加工多少套童装? 分析:分析:(1)可找不等关系:基本工资奖励450 (2)可找不等关系:基本工资5童装套数1200 解:解:(1)设企业每套奖励x 元,由题意得: 因此该企业每套至少奖励 2.7

10、8 元。 (2)设小张在六月份加工 y 套,由题得: 答:答:小张六月份至少加工 200 套童装。 说明:说明:本题取材于实际生活中的工作量,奖金问题。利用不等式解决实际 问题的题较多,应多加关注、多练习。 【模拟试题模拟试题】(答题时间:30 分钟) 1. 甲、乙二人在体育场 400m 环形跑道上赛跑,甲的速度是乙的速度的 2 倍, 若两人同时同地同向出发,1 分 40 秒后甲、乙首次相遇,问二人速度各为多少? 若两人同时同地背向而行,几分钟可相遇? 2. 某工人在一定时间内加工一批零件,如每天加工 44 个就比任务少加工 20 个,如每天加工 50 个,则可超额 10 个,求规定的零件数与

11、加工天数。 3. 某种商品换季处理,若按标价的七五折出售,将亏 25 元,而按标价的九 折出售将赚 20 元,问这种商品的标价是多少?进价为多少? 4. 某公司向银行贷款 40 万元,用来生产新产品,已知货款的年利率为 15%(不计复利:即还贷时每年利息不重复计息)每个新产品成本 2.3 元,售价 4 元,应纳税为销售额的 10%,如每年生产该种产品 20 万个,并把所有利润全 部用来还贷,问用几年后一次可还清? 5. 两位老师准备带若干名学生外出旅游,甲、乙两家旅游公司的定价相同, 且都表示提供优惠,甲公司对老师和学生一律 7 折收费,乙公司对老师全价, 学生按半价收费,问选择哪个公司合算?

12、 6. 某宾馆底楼比二楼少 5 间,某旅游团有 48 人,若全安排在底楼,每间 4 人,房间不够,每间 5 人,有房间没住满 5 人,又若全安排在二楼,每间 3 人, 房间不够,每间 4 人,有房间没有住满 4 人,该宾馆底楼有多少间房? 初一数学初一数学寒假专题寒假专题列方程、列不等式解应用题列方程、列不等式解应用题 试题答案试题答案 1. 解:解:设乙的速度为 x 米/秒,则甲的速度为(2x)米/秒,依题得; 解得 (米/秒) 答:答:甲的速度为 8 米/秒,乙的速度为 4 米/秒,分钟后相遇。 2. 解:解:设计划加工 x 天,依题得: (个) 答:答:规定的零件个数为 240 个,加工天数为 5 天。 3. 解:解:设这种商品标价 x 元,则 解之得 进价为:(元) 答:答:商品标价为 300 元,进价为 250 元。 4. 解:解:设需 x 年还清,依题得 解之 x=2 答:答:2 年后才能一次还清。 5. 解:解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论