例说平面几何阴影部分面积的求法_第1页
例说平面几何阴影部分面积的求法_第2页
例说平面几何阴影部分面积的求法_第3页
例说平面几何阴影部分面积的求法_第4页
例说平面几何阴影部分面积的求法_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、例说平面图形阴影部分面积的求法连州市慧光中学 欧阳礼摘 要 本文主要对平面图形中求阴影部分面积,作具体的方法介绍。关键词 作差法 等积法 重叠法 割补法 位移法 特值法 方程法九年制义务教育课本中“求阴影部分面积”的题目大量出现,并且在中考和数学竞赛中,也逐步增多出现。不规则阴影部分常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的。此类题目能较好地考查学生的识图能力和数学综合知识。本文通过实例介绍求阴影部分面积的几种常用方法。(一)和差法。对于求图形面积问题,计算时往往将所求图形的面积转化为规则图形的面积和或差,这是求面积的常用方法【例1】如图1,正方形的内切圆的半径为r ,这个

2、正方形将它的外接圆分割出四个弓形,其中一个弓形的面积是( )。 (a) ; (b) ; (c)(1)r2; (d)(2) r2. 解:一个弓形的面积等于正方形外接圆面积与正方形面积的差的四分之一,得故选(b)。图2图1ro 【例2】如图2,已知边长为a的正方形abcd内接于o,分别以正方形的各边为直径向正方形外作半圆,求四个半圆与o的四条弧围成的四个新月形的面积。解:四个新月形的面积s等于正方形面积与四个半圆面积的和减去o的面积: 【例3】如图3,b是ac上的一点,分别以ab、bc、ac为直径作半圆,从b作bdac,与半圆相交于d。求证:图中阴影部分面积等于以bd为直径的圆的面积。 证:ac=

3、abbc, 以bd为直径的圆面积因bdac ,adc=90,故bd2 =abbc . 阴影部分面积等于以bd为直径的圆的面积。 图3图4abcdo(二)等积法。一个图形的面积不易求或难以求出时,常借助于两个图形之间的面积相等来进行转化,改求与其面积相等的图形面积【例4】如图4,abcd为o的内接梯形,abcd,且cd为直径,如果o的半径为r,acb =15,那么图中阴影部分的面积等于 。解:连结oa、ob,abcd, oab与cab等积,又aob = 2acb = 30. . 【例5】如图5,已知半圆的直径ab = 40cm,点c、d是这个半圆的三等分点,求弦ac、ad和弧 围成的图形的阴影面

4、积.图6baoc图5 ac= bdadcdab cdab sacdsocd解:连结oc、od . 【例6】已知,如图6,o的半径为1,c是o上一点,以c为圆心,以1为半径作弧与o相交于a、b两点,则图中阴影部分的面积是 。解:连结ab,则s阴影 =2s弓形acb 。 可得oab30,从而aob120, 所以(三)重叠法。把所求阴影部分的面积问题转化为可求面积的规则图形的重叠部分的方法。这类题阴影一般是由几个图形叠加而成。【例7】如图7,正方形abcd的边长为a,以每边为直径在正方形内作半圆,求中间所围成的阴影部分的面积。图8abcd图7 解:阴影部分的面积可看作是四个同样的半圆重叠面积减去正方

5、形面积。 说明:此题也可用“作差法”来解:阴影部分面积等于半圆aob的面积减去直角三角形aob的面积所得差的4倍。 【例8】已知,如图8,菱形abcd的两条对角线长分别为a、b,分别以每边为直径向形内作半圆,求4条半圆弧围成的花瓣形面积(阴影部分的面积)。解:设以bc为直径的半圆面积为s半圆,则 所以 . 【例9】如图9,正三角形的边长为a,以各边为弦,向形内作三条120的弧,求中间阴影部分的面积。解:阴影部分的面积可看作三个同样的弓形重叠面积减去三角形面积。(说明:一个弓形的面积是 .)abcdp图10o图9(四)割补法。将一个图形的一部分割下来,而移放到其他合适位置上,从而构成易求面积的图

6、形,这种求面积的方法叫做割补法【例10】如图10,abcd是面积为1的正方形,pbc为正三角形,则pbd的面积为( )。(a) ; (b); (c); (d); (e)。解:连结ac交bd于o,连结po,则pbd被分为两部分:pbo与pod,且spbo = spoc = spod . ac ac故应选(b)。 【例11】如图11,o的半径为r, 是o的圆周长的1/4 ,在 上取与a、c等距的两点b、d,且。作beoc于e,dfoc于f,求曲边梯形befd的面积。 解:由已知条件,易证得odfboe,于是可把梯形gefd割下来补到ogb上,即梯形gefd的面积等于ogb的面积。 oeabdfgc

7、图11bac图12【例12】如图12,a、b、c两两不相交,且半径都是0.5cm,则图中的三个扇形(即三个阴影部分)的面积之和为( )。 解:三圆是等圆,可把三个扇形割补到同一个圆中,所得扇形的圆心角是180(即得半圆)。 故选(b)。(五)位移法。把一个图形通过平移变换或旋转变换,使题目中不相关或关系不密切的几何元素相对集中,以便于研究它们之间的关系。这种变换是全等变换,图形的面积没有改变,而变换后往往容易找到面积的求法。abcdo图13【例13】如图13,两个半圆,大半圆的弦cd平行于直径ab,且与小半圆相切,已知cd = 24,试求大半圆中挖去小半圆后剩下部分的面积。abomcd图14

8、解:为了计算方便,可把小半圆移动,使它与大半圆同心(如图14),它的阴影部分面积与原来的阴影部分面积相等。此时有cm = 12,则 【例14】如图15左图,以正方形的一个顶点为圆心,边长a为半径作半圆,则图中阴影部分的面积是_。 分析:左图中可以这样计算但是这样计算比较麻烦。如果把左边阴影,沿着圆弧顺时针旋转,与右边阴影相接(如右图),阴影结合成三角形;还可把左边阴影图形按中心线翻折,两部分阴影部分相接成三角形。求出三角形面积就可以了,并且此三角形的面积是正方形面积的一半。可得图15(六)特值法。特值法意指用一个特殊的数值代替题中的某些未知量,使得计算简单化,从而找到计算方法,再从特殊到一般通

9、过归纳、猜想出解题方法,这种方法也常常用在求解图形的面积的题型中。【例14】如图16,在半圆的直径ab上取一点c,分别以ac、bc为直径作半圆,过点c作cdab交圆于d,cd的长为h,则阴影部分面积为( )。 (a); (b) (c) (d).图16odcab解:设直径ab = 4,且c与圆心o重合,则 因c与o重合,所以h = 2,当h = 2时, 只有 . 故应选(b)。(七)方程法。将图形按形状、大小分类,并设其面积为未知数,通过建立方程或方程组来解出阴影部分面积的方法。【例15】如图17,已知正方形的边长为1,分别以a、b、c、d四点为圆心,以1为半径画弧,则所得四个扇形的公共部分的面

10、积是( )。 axyyyzzzbc图18abcdxyyyyzzzz图17 解:由对称性,用x、y、z分别表示曲边形的面积,则 解之,得 . (说明:上面方程组中,是圆心角为900的扇形面积,是正方形面积圆心角为900的扇形面积,是线段bc、弧ce、弧eb围成的面积=2圆心角为600的扇形面积正三角形bce的面积。)故选(a)。【例16】如图18,以边长为2a的正三角形的各顶点为圆心, 为半径作弧,求阴影部分的面积。cos=解:由对称性,用x、y、z分别表示曲边形的面积。作如图辅助线。 = 45于是xz可看作半径为 ,含(452)弧的弓形面积。 又由图可知:x3y3z = xy2z = 解由(1)、(2)、(3)联立的方程组,得x = .(说明:式中半径为,圆心角为90的扇形面积是,而所含直角三角形的面积为。式abc的底与高分别是2a、.式表示圆心角为60,半径为的扇形面积。)【例17】如图19,abcd是长方形,图中的数字是各部分的面积数,求图中阴影部分的面积.解:注意到afd和ced的面积都等于长方形abcd的面积的一半,ade与bce的面积的和也等于长方形abcd面积的一半。设阴影部分面积为x,图中另一部分的面积为y(标注在图上),则有即有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论