




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四章 桩基础的设计计算 1本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而 解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方 法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结 合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其 基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应 用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节 将主要介绍“m”法
2、。 2学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法, “”法计算单m 桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。 掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。 本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律(一)土的弹性抗力及其分布规律 1土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转 角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力 zx 和稳定桩基础的作用。土的这种作用力
3、称为土的弹性抗力。 (2)定义式 zzx Cx (4-1) 式中: 横向土抗力,kN/m2; zx 地基系数,kN/m3;C 深度 Z 处桩的横向位移,m。 z x 2影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3地基系数的概念及确定方法 (1)概念 地基系数 C 表示单位面积土在弹性限度内产生单位变形时所需施加的力, 单位为 kN/m3或 MN/m3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数 C 值是通过对试桩在不同类别土质及不同深度进行实测及后 z x zx 反算得到。大量的试验表明,地
4、基系数 C 值不仅与土的类别及其性质有关,而且 也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用 的 C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示 的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。 图 4-1 地基系数变化规律 现将桩的几种有代表性的弹性地基梁计算方法概括在表下中。 桩的几种典型的弹性地基梁法 表 4-1 计算方法图 号地基系数随深度分布地基系数 C 表达式说 明 m 法4-50a)与深度成正比C=mZm 为地基土比例系数 K 法4-50b) 桩身第一挠曲零点以上抛物 线变化,以下不随深度变化 C=KK 为常数 C 值法
5、4-50c)与深度呈抛物线变化C=cZ0.5c 为地基土比例系数 张有龄法4-50d)沿深度均匀分布C=K0K0为常数 上述的四种方法各自假定的地基系数随深度分布规律不同,其计算结果是 有差异的。实验资料分析表明,宜根据土质特性来选择恰当的计算方法。 (二)单桩、单排桩与多排桩(二)单桩、单排桩与多排桩 1单排桩的概念与力的分配 (1)概念 是指与水平外力 H 作用面相垂直的平面上,仅有一根或一排桩的桩基础。 (2)力的分配 对于单排桩,如下图所示桥墩作纵向验算时,若作用于承台底面中心的荷 载为 N、H、My ,当在单排桩方向无偏心时,可以假定它是平均分布在各桩N 上的,即 (4-2) n M
6、 M n H n N P y iii ;Q 式中:桩的根数。n 当竖向力 N 在单排桩方向有偏心距 e 时,如图所示,即 Mx=Ne,因此每根 桩上的竖向作用力可按偏心受压计算,即 图 4-2 单桩、单排桩及多排桩 图 4-3 单排桩的计算 (4-2) 2 i ix i y yM n N P 由于单桩及单排桩中每根桩桩顶作用力可按上述简单公式计算,所以归成 一类。 2多排桩概念基力的分配 (1)概念 是指在水平外力作用平面内有一根以上桩的桩基础(对单排桩作横桥向验 算时也属此情况) 。 (2)力的分配 不能直接应用上述公式计算各桩顶上的作用力,须应用结构力学方法另行 计算。 (三)桩的计算宽度
7、(三)桩的计算宽度 1定义 计算桩的内力与位移时不直接采用桩的设计宽度(直径) ,而是换算成实际 工作条件下相当于矩形截面桩的宽度 b1,b1称为桩的计算宽度。 2采用计算宽度的原因 为了将空间受力简化为平面受力,并综合考虑桩的截面形状及多排桩桩间 的相互遮蔽作用。 3计算方法 根据已有的试验资料分析,现行规范认为计算宽度的换算方法可用下式表 示: () (4-3) f Kb 10 KKbd或 式中:()与外力 H 作用方向相垂直平面上桩的边长(宽度或直径) ;bd或 形状换算系数,即在受力方向将各种不同截面形状的桩宽度乘以 f K ,换算为相当于矩形截面宽度,其值见表; f K 受力换算系数
8、,即考虑到实际桩侧土在承受水平荷载时为空间受 0 K 力 问题,简化为平面受力时所采用的修正系数,其值见表; K各桩间的相互影响系数。如图所示,当水平力作用平面内有多 根桩时,桩柱间会产生相互产生影响。为了考虑这一影响,可将桩 的实际宽度(直径)乘以系数 K,其值按下式决定:L10.6h1时 K=1.0; 当 L10.6h1时 计算宽度换算 表 4-2 名 称符号基 础 形 状 图 4-4 相互影响系数计算 形状换算系数Kf1.00.9 B d 1 . 010.9 受力换算系数K0 b 1 1 d 1 1 B 1 1 d 1 1 (4-4) 1 1 6 . 0 1 h Lb bK 式中:L1与
9、外力作用方向平行的一排桩的桩间净距(图 3-53) ; h1地面或局部冲刷线以下桩柱的计算埋入深度,可按下式计算,但 h1值不得大于桩的入土深度() ,h1=3(d+1) m;h d桩的直径,m; 根据与外力作用方向平行的所验算的一排桩的桩数而定的系数。 b n 当=1 时=1,当=2 时=0.6,当=3 时=0.5,当4 时=0.45。n b n b n b n b 但桩基础中每一排桩的计算总宽度不得大于(+1) ,当 nb1大于 1 nb B (+1)时,取(+1) 。为边桩外侧边缘的距离。 B B B 当桩基础平面布置中,与外力作用方向平行的 每排桩数不等,并且相邻桩中心距(b+1)时,
10、可 按桩数最多一排桩计算其相互影响系数 K 值,并且 各桩可采用同一影响系数。 为了不致使计算宽度发生重叠现象,要求以上 综合计算得出的 b12b。 以上的计算方法比较复杂,理论和实践的根据 也是不够的,因此国内有些规范建议简化计算。圆 形桩:当 d1m 时,b1=0.9(1.5d+0.5) ;当 d1m 时,b1=0.9(d+1) 。方形桩: 当边宽 b1m 时,b1=1.5b+0.5;当边宽1m 时,b1=b+1。而国外有些规范更为 简单:柱桩及桩身尺寸直径 0.8m 以下的灌注桩,b1=d+1(m) ;其余类型及截 面尺寸的桩,b1=1.5d+0.5(m) 。 (四)刚性桩与弹性桩(四)
11、刚性桩与弹性桩 为计算方便起见,按照桩与土的相对刚度,将桩分为刚性桩和弹性桩。 1弹性桩 当桩的入土深度时,这时桩的相对刚度小,必须考虑桩的实际刚度, 5 . 2 h 按弹性桩来计算。其中称为桩的变形系数, 5 1 EI mb 2刚性桩 当桩的入土深度时,则桩的相对刚度较大,计算时认为属刚性桩, h a 5 . 2 二、 “m”法计算桩的内力和位移 (一)计算参数(一)计算参数 地基土水平抗力系数的比例系数 m 值宜通过桩的水平静载试验确定。但由 于试验费用、时间等原因,某些建筑物不一定进行桩的水平静载试验,可采用 规范提供的经验值如下表所示。 非岩石类土的比例系数 m 值 序 号土 的 分
12、类m 或 m0(MN/m4) 1 流塑粘性土 IL1、淤泥 35 2 软塑粘性土 1IL0.5、粉砂 510 3 硬塑粘性土 0.5IL0、细砂、中砂 1020 4 坚硬、半坚硬粘性土 IL0、粗砂 2030 5 砾砂、角砾、圆砾、碎石、卵石 3080 6 密实粗砂夹卵石,密实漂卵石 80120 在应用上表时应注意以下事项 图 4-5 比例系数 m 的换算 1由于桩的水平荷载与位移关系是非线性 的,即 m 值随荷载与位移增大而有所减小,因 此,m 值的确定要与桩的实际荷载相适应。一 般结构在地面处最大位移不超过 10mm,对位 移敏感的结构、桥梁工程为 6mm。位移较大时, 应适当降低表列 m
13、 值。 2当基桩侧面由几种土层组成时,从地面 或局部冲刷线起,应求得主要影响深度 hm=2(d+1)米范围内的平均 m 值作为整个深度内的 m 值(见图 4-5)对于刚性 桩,hm采用整个深度 h。 当 hm深度内存在两层不同土时: (4-5) 2 2212 2 11 )2( m h hhhmhm m 当 hm深度内存在三层不同土时: (4-6) 2 332132212 2 11 )22()2( m h hhhhmhhhmhm m 3承台侧面地基土水平抗力系数 Cn Cn=mhn (4-7) 式中:m承台埋深范围内地基土的水平抗力系数,MN/m4; hn承台埋深,m。 4地基土竖向抗力系数 C
14、0、Cb和地基土竖向抗力系数的比例系数 m0 (1)桩底面地基土竖向抗力系数 C0 C0=m0h (4-8) 式中:m0桩底面地基土竖向抗力系数的比例系数,kN/m4,近似取 m0=m; h桩的入土深度(m),当 h 小于 10m 时,按 10m 计算。 (2)承台底地基土竖向抗力系数 Cb 图 4-7 xz、z、Mz、Qz的符号规定 Cb=m0hn (4-9) 式中:hn承台埋深(m),当 hn小于 1m 时,按 1m 计算。 岩石地基竖向抗力系数 C0 表 3-17 单轴极限抗压强度标准值 RC(MPa)C0(MN/m3) 1 25 300 15000 注:当 RC为表列数值的中间值时,C
15、0采用插入法确定。 (二)符号规定(二)符号规定 在公式推导和计算中,取 4-6 图所示的坐标系统,对力和位移的符号作如下 规定:横向位移顺 x 轴正方向为正值;转角逆时针方向为正值;弯矩当左侧纤 维受拉时为正值;横向力顺 x 轴方向为正值,如 4-7 图所示。 图 4-6 桩身受力图示 (三)桩的挠曲微分方程的建立及其解(三)桩的挠曲微分方程的建立及其解 桩顶若与地面平齐(Z=0) ,且 已知桩顶作用水平荷载及弯矩 0 Q M0,此时桩将发生弹性挠曲,桩 侧土将产生横向抗力zx,如图 3- 55 所示。从材料力学中知道,梁 的挠度与梁上分布荷载 q 之间的关系式,即梁的挠曲微分方程为 (4-
16、9) q dZ xd EI 4 4 式中:E、I分别为梁的弹性模量及截面惯矩。 因此可以得到桩的挠曲微分方程为 (4-10) 11 4 4 bmZxbq dZ xd EI zzx 式中:E、I分别为桩的弹性模量及截面惯矩; 桩侧土抗力,C 为地基系数; zx zzzx mZxCx 桩的计算宽度; 1 b 桩在深度处的横向位移(即桩的挠度) 。 z xz 将上式整理可得 0 1 4 4 z z Zx EI mb dZ xd 或 (4-0 5 4 4 z z Zxa dZ xd 11) 式中:桩的变形系数或称桩的特征值(1/m) , 5 1 EI mb 其余符号意义同前。 从桩的挠曲微分方程中不难
17、看出,桩的横向位移与截面所在深度、桩的刚 度(包括桩身材料和截面尺寸)以及桩周土的性质等有关,是与桩土变形相 关的系数。 式(4-11)为四阶线性变系数齐次常微分方程,在求解过程中注意运用材料 力学中有关梁的挠度与转角、弯矩和剪力之间的关系,即 z x z z M z Q (4- 3 3 2 2 dZ xd EI dZ xd EIM dZ dx z z z z z z Q 12) 就可用幂级数展开的方法求出桩挠曲微分方程的解(具体解法可参考有关专著) 。 若地面处即=0 处,桩的水平位移、转角、弯矩和剪力分别以、和Z 0 x 0 0 M 表示,则桩挠曲微分方程(式 4-11)的解即桩身任一截面
18、的水平位移的表 0 Q z x 达式为 (4- 1 3 0 1 2 0 1 0 10 D EI C EI M BAxxz Q 13) 利用式(4-13) ,对求导计算,并通过归纳整理后,便可求得桩身任截面的转 z x 角、弯矩及剪力的计算公式: z z M z Q (4- 2 3 0 2 2 0 2 0 20 D EI C EI M BAx z Q 14) (4- 3 3 0 3 2 0 3 0 30 2 D EI C EI M BAx EI MZ Q 15) (4- 4 3 0 4 2 0 4 0 40 3 D EI C EI M BAx EI Z QQ 16) 根据土抗力的基本假定,可求得
19、桩侧土抗力的计算公式: zzzx mZxCx (4-)( 1 3 0 1 2 0 1 0 10 D EIa C EIa M B a AxmZmZxz zx Q 17) 以上公式(4-14) 、 (4-15) 、 (4-16) 、 (4-17)中,Ai、Bi、Ci、Di(i=14)为 16 个无量纲系数,根据不同的换算深度已将其制成表格, 由附表可查用。Zz 以上求算桩的内力、位移和土抗力的式(4-13)(4-17)等五个基本公式 中均含有、M0、这四个参数。其中 M0、可由已知的桩顶受力情况 0 x 0 0 Q 0 Q 确定,而另外两个参数、则需根据桩底边界条件确定。由于不同类型桩的 0 x
20、0 桩底边界条件不同,应根据不同的边界条件求解、。 0 x 0 图 4-8 桩底抗力分析 摩擦桩、柱承桩在外荷作用下,桩底将产生转角位移时,桩底的抗力情 h 况如图 4-8 所示,与之相应的桩底弯矩值为 h M 00 00 dACxxxdNM A h A xh 000 2 0 0 ICdAxC h A h 式中:A0桩底面积; 桩底面积对其重心轴的惯性矩; 0 I 基底土的竖向地基系数,。 0 ChmC 00 这是一个边界条件。此外,由于忽略桩与桩底土之 间的摩阻力,所以认为=0,即为另一个边界条件。 h Q 将= -及=0 分别代入式(4-15)、(4-16)中得 h M 00L C h h
21、 Q )( 4 3 0 3 2 0 3 0 30 2 D EI C EI M BAxEIMh Q = 00 IC h =0)( 4 3 0 4 2 0 4 0 40 3 D EI C EI M BAxEI h Q Q 又 )( 2 3 0 2 2 0 2 0 20 D EI C EI M BAx h Q 解以上联立方程即得 (4-18) )( 0 0 0 2 0 0 0 2 0 0 3 0 0 B EI M A EI B EI M A EI x xx Q Q 式中:、均为的函数,可以由、计算得到。 0 x A 0 x B 0 A 0 Bz i A i B i C i D 对于h2.5 的摩擦桩
22、或h3.5 的支承桩,几乎为零,此时这四个系数的 h M 计算公式可以简化,已制成由值查用的表格,查看附录或参考公路桥梁基Z 础规范 。 对于桩底嵌固于未风化岩层内有足够的深度时,可根据桩底、等于零 h x h 这两个边界条件,联立求解得 (4-19) 0 0 00 0 2 0 0 0 0 2 00 0 3 0 0 B EI M A EI B EI M A EI x xx Q Q 式中、也都是的函数,根据值制成表格,可查阅附 0 0 x A 0 0 x B 0 0 A 0 0 BZZ 录或有关规范。 大量计算表明,4.0 时,桩身在地面处的位移、转角与桩底边界Z 0 x 0 条件无关,因此4.
23、0 时,嵌岩桩与摩擦桩(或支承桩)计算公式均可通用。Z 求得、后,便可连同已知的、一起代入式(4-12)(4-17) , 0 x 0 0 M 0 Q 从而求得桩在地面以下任一深度的内力、位移及桩侧土抗力。 (四)无量纲法(四)无量纲法(桩身在地面以下任一深度处的内力和位移的简捷计算方法) 按上述方法,用基本公式(4-14) 、 (4-15) 、 (4-16) 、 (4-17)计算、 z x z 、,其计算工作量相当繁重。当桩的支承条件入土深度符合一定要求时, z M z Q 可利用比较简捷计算方法来计算,即所谓的无量纲法。其主要特点一是利用边界 条件求 x0、时,系数采用简化公式;二是因为、都
24、是、的函数, 0 0 x 0 0 Q 0 M 代入基本公式整理后,无须再计算桩顶位移 x0、,而直接由已知的、 0 0 Q 求得。 0 M 对于2.5 的摩擦桩、3.5 的柱承桩,将式(4-19)代入式(4-hh 14)(4-17)经过整理归纳即可得 (4-19a) xxz B EI M A EI x 2 0 3 0 Q (4-19b) B EI M A EI z 0 2 0 Q (4- mmz BMAM 0 0 Q 19c) (4-19d) QQ QQBMA z00 对于2.5 的嵌岩桩,将式(4-18)分别代入式(4-14)(4-17) ,再经ah 整理得 (4-20a) 0 2 00 3
25、 0 xxz B EI M A EI x Q (4-20b) 000 2 0 B EI M A EI z Q (4- 0 0 00 mmz BMAM Q 20c) (4-20d) 0 0 0 0QQ QQBMA z 式(4-19) 、 (4-20)即为桩在地面下位移及内力的无量纲法计算公式,其中 、及、A x A x B A B m A m B Q A Q B 0 x A 0 x B 0 A 0 B 0 m A 0 m B 、为无量纲系数,均为h 和的函数,已将其制成表格供查用。本书摘 0 Q 0 Q BZ 录了一部分,见附表 1附表 12。使用时,应根据不同的桩底支承条件,选择 不同的计算公
26、式,然后再按、查出相应的无量纲系数,再将这些系数代hZ 入式(4-19)或式(4-20) ,就可以求出所需的未知量。当4 时,无论采用h 哪一个公式及相应的系数来计算,其计算结果都是接近的。 由式(4-19)及(4-20)可简捷地求得桩身各截面的水平位移、转角、弯矩、 剪力以及桩侧土抗力。由此便可验算桩身强度,决定配筋量,验算桩侧土抗力 及其墩台位移等。 (五)桩身最大弯矩位置(五)桩身最大弯矩位置和最大弯矩和最大弯矩的确定的确定 max M Z max M 桩身各截面处弯矩的计算,主要是检验桩的截面强度和配筋计算(关于 z M 配筋的具体计算方法,见结构设计原理教材内容) 。为此,要找出弯矩
27、最大的截 面所在的位置相应的最大弯矩值,一般可将各深度处的 Mz值求 max M Z max MZ 出后绘制图,即可从图中求得。也可用数解法求得及值如下。 z MZ max M Z max M 在最大弯矩截面处,其剪力等于零,因此=0 处的截面即为最大弯矩Q Z Q 所在位置。 max M Z 由式(4-19d)令0 00 QQ QQBMA z 则 (4- Q Q Q Q Q Q Q Q D A B M C B AM 0 0 0 0 21) 式中:CQ及 DQ也为与有关的系数,当4.0 时,可按附表 13 查得。CQZh 或 DQ值按式(4-21)求得后即可从附表 13 中求得相应的值,因为Z
28、Z 为已知,所以最大弯矩所在的位置即可求得。 5 1 EI mb max M ZZ 由式(4-21)可得 (4- q CMDM QQ Q 0 00 0 Q 或 22) 将式(4-22)代入(4-19)则得 (4-23) QQ Q QQQ KCBAM KMBMADMM mm mmm 000 max 000max 式中:; mmm BDAK QQQ CBAK mm 由上式可知与为的函数,当4.0 时,即可由附表 13 查出。 m K Q KZh 综上所述,由式(4-74)算出 CQ或 DQ,由附表 13 查出和(或) ,Z m K Q K 代入式(4-23)即可得最大弯矩值和所在位置。当4.0 时
29、,可 max M max M Zh 另查有关设计手册。 (六)桩顶位移的计算(六)桩顶位移的计算 图 4-9 所示的为置于非岩石地基中的桩,已知桩露出地面长,若桩顶为自 0 l 由端,其上作用有 Q 及 M,顶端的位移可应用叠加原理计算。设桩顶的水平位 移为,它是由下列各项组成:桩在地面处的水平位移、地面处转角所引 1 x 0 x 0 起的桩顶的水平位移、桩露出地面段作为悬臂梁桩顶在水平力 Q 作用下产 00l 生的水平位移以及在作用下产生的水平位移,即 Q xM m x (4- m xxlxx Q0001 24) 因逆时针为正,所以式中用负号。 0 桩顶转角则由地面处的转角、水平力作用下引起
30、的转角及弯矩作 1 0 Q Q 用引起的转角组成,即 m (4- m Q01 图 4-9 桩顶位移计算 25) 上两式中的及可按计算所得的及分别代入式(4- 0 x 0 MlM 00 QQQ 0 19a)及式(4-19b) (此时式中的无量纲系数均用时的数值)求得,即0Z (4- xx B EI lM A EI x 2 0 3 0 QQ 26) (4- B EI lM A EI 0 3 0 QQ 27) 上式中的、是把露出段作为下端嵌固、跨度为 lo的悬臂梁 0 x m x Q m 计算而得,即 (4- EI Ml EI l EI Ml x EI l x m m 0 2 0 2 0 3 0 ;
31、 2 2 ; 3 -Q Q Q Q 28) 由上式算得、及、代入式(4-26) 、 (4-27)再经整理归纳, 0 x 0 m x Q m 便可写成如下表达式: (4- 11 2 1 1 2 1 3 1 B EI M A EI B EI M A EI x xx Q Q 29) 式中:Ax1、Bx1=、均为及的函数,现列于附表 1416 中。 1 A 1 Bhh 00 ll 对于桩底嵌固于岩基中、桩顶为自由端的桩顶位移计算,只要按相关公式 计算出时的、即可按上述方法求出桩顶水平位移及转角,其中0Z 0 x 0 1 x 1 、仍可按式(4-28)计算。 Q x m x Q m 露出地面部分为变截面
32、的桩的计算,可参看有关规范。单桩、单排桩基础 的设计计算,首先应根据上部结构的类型、荷载性质与大小、地质与水文资料, 施工条件等情况,初步拟定出桩的直径和长度。承台位置。桩的根数及排列等, 然后进行验算与修正,选出最佳方案。具体计算可参见下列算例。 三、单排桩内力计算示例(略) 第三节 多排桩内力与位移计算 图 4-10 所示为多排桩基础,它具有一个对称面的承台,且外力作用于此对 称平面内。假定承台与桩头为刚性联结。由于各桩与荷载的相对位置不尽相同, 桩顶在外荷载作用下的变位就会不同,外荷载分配到各个桩顶上的荷载、 i P 、也就不同。因此,不能再用单排桩的办法计算多排桩中基桩桩顶的、 i Q
33、 i M i P 、值。一般将外力作用平面内的桩看作平面框架,用结构位移法解出各桩 i Q i M 顶上的、后,就可以应用单桩的计算方法解决多排桩的问题了,也就 i P i Q i M 是说,把多排桩的问题化成单排桩。 (一)承台变位及桩顶变位(一)承台变位及桩顶变位 假设承台为一绝对刚性体,现以承台底面中心点 O 作为承台位移的代表点。 O 点在外荷载、作用下产生横轴向位移、竖向位移及转角。NHM 0 a 0 b 0 其中、以坐标轴正向为正,以顺时针转动为正。 0 a 0 b 0 桩顶嵌固于承台内,当承台在外荷载作用下产生变位时,各桩顶之间的相 对位置不变,各桩桩顶的转角与承台的转角相等。设
34、第 排桩桩顶(与承台联结i 处)沿轴方向的线位移为,轴方向的线位移为,桩顶转角为,则x 0i az 0i b 0i 有如下关系式: (4- oio ioio oio xbb aa 0 30) 式中:第 排桩桩顶轴线至承台中心的水平距离。 i xi 若基桩为斜桩,如图 4-10 所示,那么,就又有三种位移。设为第 排桩桩 i bi 顶处沿桩轴线方向的轴向位移,为垂直于桩轴线的横轴向位移,为桩轴线 i a i 的转角,根据投影关系则应有 (4-31) 0 000 000 cos)(sin cossin sin)(cos sincos ioi iii iioiioi iii iioiioi xba
35、bab xba baa (二)单桩桩顶的刚度系数(二)单桩桩顶的刚度系数 AB 前面已经建立了承台变位和桩顶变位之间的关系,为了建立位移方程,还 必须建立桩顶变位和桩顶内力之间的关系。为此,首先引入单桩桩顶的刚度系 数。 AB 设第 根桩桩顶作用有轴向力、横轴向力、弯矩,如图 4-11 所示,i i P i Q i M 则定义为当桩顶仅仅发生种单位变位时,在桩顶引起的种内力。具体 AB BA 到图 3-64 中的变位图式,则有: 图 4-12 单桩刚度系数示意 图 4-10 多排桩基础 图 4-11 (1)当第 根桩桩顶处仅产生单位轴向位移(即)时,在桩顶引起的i1 i b 轴向力为,也即;
36、1 pp (2)当第 根桩桩顶处仅产生单位横轴向位移(即)时,在桩顶引起i1 i a 的横轴向力为,也即; 2 QQ (3)当第 根桩桩顶处仅产生单位横轴向位移(即)时,在桩顶引起i1 i a 的弯矩为,也即;或当桩顶仅产生单位转角(即)时,在桩顶引 3 QM 1 i 起的横轴向力为,也即。=; 3 MQ MQ QM 3 (4)当第 根桩桩顶处仅产生单位转角(即)时,在桩顶引起的弯i1 i 矩为,也即; 4 MM 由此,第 根桩桩顶变位所引发的桩顶内力分别为:i (4- sin)(cos sin)(cos cos)(sin 3434 3232 11 ioioiooiii oioioioiii
37、ioioioii xbaM xba xbbP Q 32) 由此可见,只要能解出、及 o a o b o 、,就可以由上式求得、 1 2 3 4 i P 和,从而利用单桩方法求出基桩的内 i Q i M 力。 (即)的求解: 1 pp 桩顶承受轴向力而产生的轴向位P 移包括桩身材料的弹性压缩变形及桩底处地基土的沉降两部分。在对桩侧 c k 摩阻力作理想化假设之后,可得到 EA hlo c P 剩下的问题就是确定。 k 设外力在桩底平面处的作用面积为,则根据文克尔假定得 0 A (4- oo k AC P 33) 由此得桩顶的轴向变形为 i b (4- oo o kci AC P AE hlP b
38、 )( 34) 令上式中,所求得的即为。其余的单桩桩顶刚度系数均为基桩受1 i bP 1 单位横轴向力(包括弯矩)作用的结果,可以由单桩“”法求得。其结果为:m (4- m m oo o EI EIx EIx ACAE hl 4 2 3 3 2 1 1 1 Q 35) 式中:系数,目前暂不计入桩顶与桩底荷载比值,对于打入桩和振动 桩取 ,钻、挖孔灌注桩取,柱桩则取;3/22/10 . 1 桩身横截面面积;A 桩身材料的受压弹性模量;E 桩底平面处地基土的竖向地基系数,; 0 ChmC 00 单桩桩底压力分布面积,即桩侧摩阻力以扩散到桩底时的面 0 A4/ 积,对于柱桩,为单桩的底面面积;对于摩
39、擦桩,取下列二式计算值的较小 0 A 者; 2 0 ) 24 ( d htgA 2 0 4 SA 式中: 桩周各土层内摩擦角的加权平均值; 桩的计算直径;d 桩的中心距;S 、无量纲系数,均是及的函数,的摩擦 Q x m x m ahh 00 all ah5 . 2 桩列于表 17表 19 中,其余可在有关设计手册中查取。 (三)桩群刚度系数(三)桩群刚度系数 AB 为了建立承台变位和荷载之间的关系,还必须引入整个桩群的刚度系数。 AB 其定义为当承台发生单位种变位时,所有桩顶(必要时包括承台侧面)引起B 的种反力之和。共有 9 个,其具体意义及算式如下。A AB 当承台产生单位横轴向位移()
40、时,所有桩顶对承台作用的竖轴向反1 0 a 力之和、横轴向反力之和、反弯矩之和为、: ba aa a (4- n i iiiia n i iiaa n i iiba x 1 321 1 2 2 2 1 1 21 coscossin)( )cossin( cossin)( 36) 式中表示桩的根数。n 承台产生单位竖向位移时() ,所有桩顶对承台作用的竖轴向反力之1 o b 和、横轴向反力之和及反弯矩之和为、: bb ab b (4- ii n i iib baab n i iibb x sin)sincos( )sincos( 3 1 2 2 2 1 1 2 2 2 1 37) 当承台绕坐标原
41、点产生单位转角()时,所有桩顶对承台作用的竖轴1 o 向反力之和、横轴向反力之和及反弯矩之和为、: b a (4- sin2)sincos( 43 2 1 2 2 2 1 iii n i ii aa bb xx 38) (四)建立平衡方程(四)建立平衡方程 根据结构力学的位移法,沿承台底面取脱离体,如图 4-13 所示。承台上作 用的荷载应当和各桩顶(需要时考虑承台侧面土抗力)的反力相平衡,可列出 位移法的方程如下: 图 4-13 承台脱离体 (4-39) ), 0(0 )0(0 )0(0 000 000 000 点取矩对oMMba HHba NNba ba aabaa bbbba 联立求解上
42、式可得承台位移、的 0 a 0 b 0 数值。这样,公式(4-39)中右端各项均为 已知,从而可算得第 根桩桩顶的轴向力、i i P 横轴向力及弯矩。至此,即可按单桩 i Q i M 的“m”法计算多排桩身内力和位移。当桩 柱布置不对称时,坐标原点可任意选择;当桩柱布置对称时,将坐标原点选o 择在对称轴上,此时有,代入式(4-39)可简化计算。0 bbbaab 如果是竖直桩,则以=0,代入前述方程,可直接求出、和: i 0 a 0 b 0 (4- n i bb NN b 1 1 0 40) (4-41) n i n i n i n i i n i n i n i i aaa abb x MHx
43、 MH a 111 2 1 33 2 42 111 31 2 4 2 0 )()( )( (4- n i n i n i n i i n i n i aaa aaa x HM HM 111 2 1 31 2 42 11 32 2 0 )()( 42) 当各桩直径相同时,则 (4- 1 0 n N b 43) 图 4-14 (4-44) 2 3 2 1 2 142 3 1 2 14 0 )( )( nxnn MnHxn a n i i n i i (4-45) 2 3 2 1 2 142 32 0 )( nxnn HnMn n i i 因为此时桩均为竖直且对称,式(3-72)可写成 (4-46)
44、 0304 0302 11 )( aM aQ xbbP i i oioii (五) 多排桩算例(略) 第三节 群桩基础竖向分析及其验算计算 试验表明,低桩承台的承台底面摩阻力和 侧向土抗力对抵抗水平外力的作用是明显的, 此时可考虑承台、基桩和土协同工作,使设计 更加合理。但是,当承台底面以下存在可液化 土、湿陷性黄土、高灵敏度软土、欠固结土、 新填土、或可能出现震陷、降水、沉桩过程产 生高孔隙水压和土体隆起时,则不考虑承台底 的摩阻力。 如图 4-14 所示,承台埋入地面或最大冲刷线以下为,为承台侧面任一 n hZ 点距底面的距离(取绝对值) ,则点的位移为。设为承台底面处ZZa 00 n C
45、 侧向土的地基系数,地面处为零,中间按直线变化,则承台侧面土作用在单位 宽度上的水平抗力及其对垂直于平面的轴的变矩为 x Exozy Ex M nn hh n n n x dZZh h C ZacdZZaE 00 0000 )()()( (4- ccnnnn SFa hChC a 00 2 00 62 47) n h Ex cZdZZaM 0 00 )( (4- ccnnnn ISa hChC a 00 32 0 126 48) 式中:承台底面处侧向土的地基系数; n C 、承台底面以上侧向土水平抗力系数图形的面积、对 c F c S c IC 于底面的面积矩、惯性矩: 2 nnc hC F
46、6 2 nnc hC S 12 3 nnc hC I 在图 4-14 中,承台在垂直于力作用面方向的宽度为,则承台的计算宽度B 。设桩群的基桩数为,第 排桩的根数为,坐标原点至桩的距离1 0 BBni i k 为,则承台仅发生单位竖向位移()时,承台受到 i x1 0 b (4- 0 cossin)( )sincos( 1 21 1 2 2 2 1 b n i bbiiab n i bbiibb AC AC 反弯矩 水平抗力 竖向抗力 49) 当承台仅发生单位水平位移()时,承台受到1 0 a (4- n i c iiiia n i c iiaa ba SBx FB 1 0321 1 0 2
47、2 2 1 coscossin)( )cossin( 0 反弯矩 水平抗力 竖向抗力 50) 当承台仅发生单位转角时() ,承台受到1 0 (4-51) bb c n i iiiii aa b ICIBxx 0 1 43 22 2 2 1 sin2)sincos( 0 反弯矩 水平抗力 竖向抗力 式中:承台发生单位竖向位移时,承台底所受到的竖向抗力。其中 bbA C 为承台底地基土的竖向抗力系数, m 时按 1m 计算, b C nb hmC 0 n h1 m; 为承台底面与地基土的接触面积, 0 m b A ,为承台的底面 面积,为各个基桩桩顶的 n i ib AFA 1 F i A 横截面
48、积; 承台发生单位竖向位移时承台底所受到的水平向抗力(摩阻 bbA C 力) ,为摩擦系数; 承台发生单位水平位移时承台侧面所受到的水平土抗力; c FB0 承台发生单位水平位移时承台侧面受到的土抗反弯矩,或承台发 c SB0 生单位转角时,承台所受到的水平土抗力; 承台发生单位转角时承台侧面所受到的土抗力反弯矩; c IB0 承台发生单位转角时承台底面所受到的土抗力反弯矩。为承台 bbI C b I 底与地基土接触面的惯性矩。,其中为承台底面积,为 n i iiiFb xkAII 1 2 F F I 承台底面积的惯性矩。 有了前述的群桩的刚度系数,而单桩桩顶的刚度系数不发生变化,从而 AB
49、可以利用前述多排桩的方法,解方程(4-29)得承台的位移、,进而 0 a 0 b 0 得到第 根桩的桩顶作用力、,求出各桩的内力和位移。对于竖直(i i P i Q i M )而桩截面面积均相等的情况,有关规范中备有计算公式,可以直接引0 i 用计算,而不必解方程。 上述考虑承台、桩、土共同作用的计算水平荷载下的群桩,计算理论比较 完整严密,考虑的因素比较全面,特别是承台埋深较大或有地下室的情况,承 台和地下侧墙的承载作用能得到合理考虑,这是符合实际的,并能取得明显的 技术经济效果。因此,这一方法计算的对象规定为两类,第一类是受 8 度或 8 度以上地震作用的大型桥梁或高大建筑物桩基。这类桩基
50、不仅各单桩受力大, 而且由于建筑物重心高,靠外缘的桩还可能受到力矩引起的拔力,按上述方法 计算能考虑抵抗水平力的有利和不利因素,使设计更加合理。第二类是受水平 力的高承台桩基。因其抵抗水平的能力差,计算粗糙可能招致损坏。如力矩荷 载的大小对基桩内力的影响很大,在传统的简化公式中就无法考虑。此外,对 一些承受水平力较大的剪力墙桩基,也可考虑按这种方法计算。 群桩基础承载力验算 由柱桩组成的群桩基础,群桩承载力等于单桩承载力之和,群桩基础沉降 等于单桩沉降,群桩效应可以忽略不计,不需要进行群桩承载力验算。即使由 摩擦桩组成的群桩基础,在一定条件下也不需要验算群桩基础的承载力。例如 建筑桩基础规定根
51、数少于 3 根的群桩基 础,桥梁工程规定桩距6 倍桩径时,只要验算单桩的承载力就可以了。但当 不满足规范条件要求时,除了验算单桩承载力外,还需要验算桩底持力层的承 载力。 例如摩擦群桩基础当桩间中心距小于 6 倍桩径时,如图 4-15 所示,将桩基 础视为相当于cdef范围内的实体基础,桩侧外力认为以/4 角向下扩散,可 按下式验算桩底平面处土层的承载力: (4-)1 ( max W eA A N A hBL hL Lh 图 4-15 摩擦群桩应力分布 52) 式中:桩底平面处的最大压应力,kPa; max 桩底以上土的平均容重, kN/m3; 承台底面以上土的容重,kN/m3; 作用于承台底
52、面合力的竖直分N 力,kN; e 作用于承台底面合力的竖直分 力对桩底平面处计算面积重心轴的偏心 距,m; A 假想的实体基础在桩底平面处的计 算面积,即ab(图 3-46) ,m2; W 假想的实体基础在桩底平面处的截 面模量,m3; L、B承台的长度、宽度,m; 桩底平面处的容许承载力,或承载力设计值,应经过埋深 Lh (h+l)修正; 承台底面到桩端的距离,m;l 承台底面到地面(或最大冲刷线)的距离。对(图 3-46b)所示h 的高承台桩 基,h=0,埋置深度即为l。 如果需要,可以将群桩基础作为一个实体基础,用分层总和法计算桩端以 下持力层的沉降量。持力层下有软弱土层时,还应验算软弱下卧层的承载力。 具体计算可参阅有关规范或设计手册。 由以上的介绍可见,桩基础设计计算的工作量是相当大的,因此,许多单 位已经编制有计算软件可供使用。其基本步骤概括于图 4-16 所示的计算框图中。 T-肯定或满足;F-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国户外霓虹灯广告牌行业投资前景及策略咨询研究报告
- 2025至2031年中国喷塑彩边网篮行业投资前景及策略咨询研究报告
- 2025至2031年中国乞丐帽行业投资前景及策略咨询研究报告
- 2025至2030年中国镍镉可充电池数据监测研究报告
- 2024年度宁夏回族自治区护师类之主管护师真题练习试卷B卷附答案
- 语文(全国甲卷02)(考试版A3)
- 2025《中华人民共和国合同法》(官方版)
- 2025年全国大学生科普知识竞赛题库430题及答案
- 专题19 南方地区-三年(2020-2022)中考地理真题分项汇编(辽宁专用)(原卷版)
- 黑龙江2025年03月黑龙江省佳木斯市度“市委书记进校园”引进384名急需紧缺专业技术人才笔试历年典型考题(历年真题考点)解题思路附带答案详解
- (高清版)DB11∕T2316-2024重大活动应急预案编制指南
- 2025届陕西省安康市高三下学期二模历史考试
- 小学生航天科技教育课件
- 人工智能机器人研发合同
- 放射防护知识培训
- 《社区智慧养老模式研究的国内外文献综述》4200字
- 专题13资源、环境与国家安全三年(2022-2024)高考地理真题分类汇编含答案与解析
- 监控安装实施供货方案
- 《劳动与社会保障法》课程教学大纲
- 2025年全屋定制家居企业发展策略及经营计划
- 计算机系统结构自考2024-2025真题及答案(02325-历年试题全带答案)
评论
0/150
提交评论