下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学的解题方法下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。同样这些方法也能给你们现在的学习有些协助。1、配方法 配方法最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础。因式分解的方法有很多,除课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且
2、应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程(a、b、c为常数且a0)根的判别式= ,不但用来判定根的情况,而且作为一种解题方法,在代数式变形、解方程(组) 、解不等式、函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理能轻松解决含字母系数的一元二次方程的一个根求另一根;已知两个数的和与积求这两个数;二次方程根的符号等。5、待定系数法 在解数学问题时,若所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出
3、关于待定系数的方程,最后解出这些待定系数的值,从而解答数学问题,这种解题方法称为待定系数法。它是求函数解析式最常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它能够是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。使用构造法解题,能够使代数、三角、几何等各种数学知识互相渗透。 7、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过准确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题准确的一种方
4、法。反证法能够分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤:(1)反设;(2)归谬;(3)结论。 8、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算相关的性质定理(如等高面积之比等于两底之比;相似三角形的面积之比等于相似比的平方),不但可用于计算面积,而且用它来证明平面几何题(常见的有垂线段问题等)。9、几何变换法 几何变换法就是通过作辅助线使分散的条件集中从而达到解题的目的。其方法有(1)平移(交叉线);(2)旋转(中点、等边三角形、,正方形、,等腰直角三角形);(3)对称(角平分线、等腰三角形)。 10、客观性题的解题方法
5、 客观性题有选择题和填空题,要想迅速、准确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。常用方法: (1)直接推演法:直接从命题给出的条件出发,使用概念、公式、定理等实行推理或运算,得出结论,选择准确答案。 (2)验证法:由题设找出合适的验证条件,再通过验证,找出准确答案,亦可将供选择的答案代入条件中去验证,找出准确答案,此法称为验证法(也称代入法)。 (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。(4)排除、筛选法:对于准确答案有且只有一个的选择题,根据数学知识或推理、演算,把不准确的结论排除,余下的结论再经
6、筛选,从而作出准确的结论。 (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出准确的选择。 (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出准确的结果。 初中几何一般证题途径证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边.4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
7、 *9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 *10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 *12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角
8、相等,弦切角等于它所夹的弧对的圆周角。 *7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 *9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等 证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。
9、2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 *10.在圆中平分弦(或弧)的直径垂直于弦。 *11.利用半圆上的圆周角是直角。 证明线段的和差倍分 1.作两条线段的和,证明与第三条线段相等。 2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。 3.延长短线段为其二倍
10、,再证明它与较长的线段相等。 4.取长线段的中点,再证其一半等于短线段。 5.利用一些定理(三角形的中位线、含30度的直角三角形、直角证明角的和差倍分 1.与证明线段的和、差、倍、分思路相同。 2.利用角平分线的定义。 3.三角形的一个外角等于和它不相邻的两个内角的和。 证明线段不等 1.同一三角形中,大角对大边。 2.垂线段最短。 3.三角形两边之和大于第三边,两边之差小于第三边。 4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。 *5.同圆或等圆中,弧大弦大,弦心距小。 6.全量大于它的任何一部分。 证明两角的不等 1.同一三角形中,大边对大角。 2.三角形的外角大于和它不
11、相邻的任一内角。 3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。 *4.同圆或等圆中,弧大则圆周角、圆心角大。 5.全量大于它的任何一部分。 证明比例式或等积式 1.利用相似三角形对应线段成比例。 2.利用内外角平分线定理。 3.平行线截线段成比例。 4.直角三角形中的比例中项定理即射影定理。 *5.与圆有关的比例定理-相交弦定理、切割线定理及其推论。 6.利用比利式或等积式化得。 证明四点共圆 *1.对角互补的四边形的顶点共圆。 *2.外角等于内对角的四边形内接于圆。 *3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。 *4.同斜边的直角三角形的顶点共圆。 *5.到顶点距离相等的各点共圆。附 常用的辅助线:1 中点问题:(1)延长过中点的线段;(2)构造中位线;(3)直角三角形斜边上的中线;(4)位似2 作平行线构造相似基本图形(A形,X形)解决成比例线段问题。3 梯形:(1)平移腰;(2)平移对角线:(3)作高线;(4)延长腰。4 证线段的和差:截长补短证全等。5 作垂径三角形求与圆半径有关的计算。6 已知切线或证切线,连半径。7 已知直径,作弦得直径所对的圆周角。8 两圆问题作连心线与公共弦。9 作垂线解决(1)三角问题,(2)面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论