版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.微专题圆锥曲线几何条件的处理策略圆锥曲线处理心法:一、几何条件巧处理,事半功倍! 二、谋定思路而后动,胸有成竹!三、代数求解不失分,稳操胜券! 四、解后反思收货大,触类旁通 !1.平行四边形处理策略几何性质代数实现对边平行斜率相等,或向量平行对边相等长度相等,横(纵)坐标差相等对角线互相平分中点重合 例1.(2015,新课标2理科20)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为 ()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由【答案】()详见解析;()能,或【解析】试题分析:()题中涉
2、及弦的中点坐标问题,故可以采取“点差法”或“韦达定理”两种方法求解:设端点的坐标,代入椭圆方程并作差,出现弦的中点和直线的斜率;设直线的方程同时和椭圆方程联立,利用韦达定理求弦的中点,并寻找两条直线斜率关系;()根据()中结论,设直线方程并与椭圆方程联立,求得坐标,利用以及直线过点列方程求的值试题解析:()设直线,将代入得,故,于是直线的斜率,即所以直线的斜率与的斜率的乘积为定值()四边形能为平行四边形因为直线过点,所以不过原点且与有两个交点的充要条件是,由()得的方程为设点的横坐标为由得,即将点的坐标代入直线的方程得,因此四边形为平行四边形当且仅当线段与线段互相平分,即于是解得,因为,所以当
3、的斜率为或时,四边形为平行四边形考点:1、弦的中点问题;2、直线和椭圆的位置关系2.直角三角形处理策略几何性质代数实现(1)两边垂直斜率乘积为-1,或向量数量积为0(2)勾股定理两点的距离公式(3)斜边中线性质(中线等于斜边一半)两点的距离公式例2.椭圆()的离心率为,长轴端点与短轴端点间的距离为,(1)求椭圆的方程;(2)过点的直线与椭圆交于两点,为坐标原点,若为直角三角形,求直线的斜率解析:(2)根据题意,过点满足题意的直线斜率存在,设,联立消去得, 令,解得。设两点的坐标分别为,则,(1)当为直角时, 所以,即,所以所以,解得(2)当或为直角时,不妨设为直角,此时,所以即又,将代入,消去
4、得,解得或(舍去)将代入得,所以,经检验所得值均符合题意,综上,的值为和3.等腰三角形处理策略几何性质代数实现(1)两边相等两点的距离公式(2)两角相等底边水平或竖直时,两腰斜率相反(3)三线合一(垂直且平分)垂直:斜率或向量 平分:中点坐标公式例3.在直角坐标系中,已知点,为动点,且直线与直线斜率之积为,(1)求动点的轨迹方程;(2)设过点的直线与椭圆交于两点,若点在轴上,且,求点的纵坐标的范围解析:(1)设动点的坐标为,依题意可知整理得,所以动点的轨迹的方程为(2)当直线的斜率不存在时,满足条件的点的纵坐标为0,当直线的斜率存在时,设直线的方程为,将代入,并整理得,设,则,设的中点为,则,
5、所以,由题意可知,又直线的垂直平分线的方程为,令解得,当时,因为,所以当时,因为,所以,综上所述,点的纵坐标的范围是.4.菱形的处理策略例4.椭圆M:()过点,且离心率为(1)求椭圆M的方程;(2)是否存在菱形,同时满足以下三个条件:点在直线上; 点在椭圆上 ; 直线的斜率等于1;如果存在,求出点的坐标,如果不存在,说明理由。解析:(1)由题意得解得,;所以椭圆M的方程为(2)不存在满足题意的菱形,理由如下:假设存在满足题意的菱形,设直线的方程为,且,线段的中点,则由可得,由可得,又,所以,若四边形为菱形,则是的中点,点的纵坐标,又因为点在椭圆上,所以与矛盾,故不存在满足题意的菱形。5.圆的处
6、理策略几何性质代数实现(1)点在圆上点与直径端点向量数量积为零(2)点在圆外点与直径端点向量数量积为正数(3)点在圆内点与直径端点向量数量积为负数例5.已知椭圆,点,分别是椭圆的左焦点、左顶点,过点的直线(不与轴重合)交于两点,(1)求的离心率及短轴长;(2)是否存在直线,使得点在以线段为直径的圆上,若存在,求出直线的方程;若不存在,说明理由. (1)由得,所以的离心率为,短轴长为;(2)方法一:由题意知,设,则,因为所以,所以点不在以为直径的圆上,即不存在直线,使得点在以线段为直径的圆上。方法二、由题意可设直线的方程为,由 可得 所以,所以,因为所以,所以,所以点不在以为直径的圆上,即不存在
7、直线,使得点在以线段为直径的圆上。6.角的处理策略几何性质代数实现(1)锐角,直角,钝角角的余弦(向量数量积)的符号(2)倍角,半角,平分角角平分线性质,定理(夹角到角公式)(3)等角(相等或相似)比例线段或斜率例6.【2013.山东,理科22】椭圆: 的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为。()求椭圆的方程;()()点是椭圆上除长轴端点外的任一点,连接,设的角平分线交的长轴于点,求的取值范围;解析:()法一:由()知,则,由椭圆定义得, 因为平分,所以,则,所以所以,即法二:由题意可知,即,设,其中,将向量坐标代入并化简得,因为,所以而,所以【跟踪变式训练】1.
8、【转化为平行的处理】【2016高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.【答案】()见解析;()()设与轴的交点为,则.由题设可得,所以(舍去),. 设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为. .12分来2.【转化为等腰三角形处理】【2016高考浙江理数】(本题满分15分)如图,设椭圆(a1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公
9、共点,求椭圆离心率的取值范围.【答案】(I);(II)【解析】 ()设直线被椭圆截得的线段为,由得,故, 因此来源:学_科_网Z_X_X_K()假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,满足 记直线,的斜率分别为,且,由()知,故,所以由于,得,因此, 因为式关于,的方程有解的充要条件是,所以因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,由得,所求离心率的取值范围为3【转化为等腰三角形处理】【2015江苏高考,18】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3. (1)求椭圆的标准方程; (2)过F的直线与椭圆交于A,
10、B两点,线段AB的垂直平分线分别交直线l和AB于 点P,C,若PC=2AB,求直线AB的方程.【答案】(1)(2)或【解析】试题分析(1)求椭圆标准方程,只需列两个独立条件即可:一是离心率为,二是右焦点F到左准线l的距离为3,解方程组即得(2)因为直线AB过F,所以求直线AB的方程就是确定其斜率,本题关键就是根据PC=2AB列出关于斜率的等量关系,这有一定运算量.首先利用直线方程与椭圆方程联立方程组,解出AB两点坐标,利用两点间距离公式求出AB长,再根据中点坐标公式求出C点坐标,利用两直线交点求出P点坐标,再根据两点间距离公式求出PC长,利用PC=2AB解出直线AB斜率,写出直线AB方程.试题
11、解析:(1)由题意,得且,解得,则,所以椭圆的标准方程为(2)当轴时,又,不合题意当与轴不垂直时,设直线的方程为,将的方程代入椭圆方程,得,则,的坐标为,且若,则线段的垂直平分线为轴,与左准线平行,不合题意从而,故直线的方程为,则点的坐标为,从而因为,所以,解得此时直线方程为或【考点定位】椭圆方程,直线与椭圆位置关系4【圆的处理】.设为坐标原点,已知椭圆的离心率为,抛物线的准线方程为(1)求椭圆和抛物线的方程;(2)设过定点的直线与椭圆交于不同的两点,若在以为直径的圆的外部,求直线的斜率的取值范围【答案】(1),;(2).试题解析: (1)由题意得,故抛物线的方程为,又,从而椭圆的方程为5分(2)显然直线不满足题设条件,可设直线由,得7分,9分,来 根据题意,得,11分,综上得12分考点:直线与圆锥曲线位置关系5【角的处理】【2016高考天津理数】(本小题满分14分)设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.()求椭圆的方程;()设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度虚拟现实设备研发与委托生产合同
- 2024年度机械设备买卖合同样本
- 2024年度人力资源外包与招聘服务协议
- 2024年度物流园区建设与运营合同
- 2024年员工保密协议模板
- 2024年度自建房施工合同终止合同
- 2024年工程预付款资金监管协议
- 2024出版社与作者之间的出版合同
- 2024年度企业文化建设合作协议
- 2024年建筑企业与监理单位服务协议
- 中国女性生理健康白皮书
- 天然气巡检记录表
- 甲苯磺酸瑞马唑仑临床应用
- 民法典讲座-继承篇
- 外包施工单位入厂安全培训(通用)
- 糖尿病健康知识宣教课件
- 客户接触点管理课件
- Python语言学习通超星课后章节答案期末考试题库2023年
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
- 高中英语-Book 1 Unit 4 Click for a friend教学课件设计
- 年产30万吨碳酸钙粉建设项目可行性研究报告
评论
0/150
提交评论