《独立性检验》教学设计说明(董凯)_第1页
《独立性检验》教学设计说明(董凯)_第2页
《独立性检验》教学设计说明(董凯)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、独立性检验的基本思想及其初步应用问题背景分析分类111观测值k临界值k0变量11间的K在“犯错误概率不超过”关系ii1前提下,两分类变量有/无关独立 性 检 验I新课标教材 人教A版数学2-3(选修)第三章统计案例独立性检验教学设计说明大同一中董凯一、内容与内容解析独立性检验为新课标教材中新增加的内容虽然本节是新增内容,理论比较复杂,教学时间也不长 (1-2课时),但由于它贴近实际生活,在整个高中数学中, 地位不可小视.在近几年各省新课标高考试题中,本节内容 屡屡出现,而且多以解答题的形式呈现,其重要性可见一斑该内容是前面学生在数学3(必修)中的统计知识的进一步应用,并与本册课本前面提到的事件

2、的独立性一节关 系紧密,此外还涉及到与数学2-2(选修)中讲到的“反证法”类似的思想本小节的知识内容如右图。“独立性检验”是在考察两个分类变量之间是否具有相关性的背景下提出的,因此教材 上首先提到了分类变量的概念,并给出了考察两个分类变量 之间是否相关的一种简单的思路,即借助等高条形图的方 法,随后引出相对更精确地解决办法独立性检验。独立 性检验的思想,建立在统计思想、假设检验思想(小概率事件在一次试验中几乎不可能发生)等基础之上,通常按照如下步骤对数据进行处理:明确问题t确定犯错误概率的上界 及K2的临界值ko t收集数据t整理数据t制列联表2t计算统计量K的观测值k t比较观测值k与临界值

3、ko并给出结论本节的重点内容是通过实例让学生体会独立性检验的基本思想,掌握独立性检验的一般步骤二、目标与目标解析本节课的教学目标是主要有:1. 理解分类变量(也称属性变量或定性变量)的含义,体会两个分类变量之间可能具有相关性;2. 通过对典型案例(吸烟和患肺癌有关吗?)的探究,了解独立性检验(只要求2 X 2列联表)的基本思想、方法、步骤及应用。3. 鼓励学生体验用多种方法(等高条形图法与独立性检验法 )解决同一问题,并对各种方法进行比较。4. 让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性(如统计可能犯 错误,原因可能是收集的数据样本容量小或样本采集不合理,

4、也可能是理论上的漏洞,如在一次实验中,我们假设 小概率事件不发生,这一点本身就值得质疑)其中第2条是重点目标,也是课程标准中明确指出的教学要求之一三、教学问题诊断分析基于对学生已有数学水平的分析,在本节新学内容时,有以下几点是初学者不易理解或掌握的:1. K2的结构比较奇怪,来的也比较突然,学生可能会提出疑问未必恰好为o,但不会太大,于是这个值的平方占概率乘积的比例a a a n abac应该较小。a a关于这个问题的处理,要首先利用好前面对“比例”或者两个分类变量“独立”的分析。借助两件事独立的定义以及样本容量较大时可以用频率近似表示概率,可以得到- ,考虑到近似造成的误差,n abac2a

5、bac故加和之后a a abac a a abacb b n b abbb a b dc cc a c dc cc a c dd dn d bdd b应该很小,而将此式化简之后即得K2的表达式2n (ad bc)(a b)(a c)(d b)(d c)(这个推导过程是我借鉴人教B版教材相应章节知识内容获悉的).另,由于 A, B;A,B;A,B; A, B 四对事件的独立具有等价性由此可知K2越小说明两件事越“独立”,因此当它小于临界值时有利于说明二者独立,大于或等于临界值时,有利于说明二者相关2. 如何理解独立性检验的基本思想?这个问题需要和反证法做一个对比,学生可以通过完成表格(印在学案上

6、)以对二者的基本思想作比较并加以区别。表格内容如下:反证法思想用于独立性检验的假设检验思想目标证明结论成立结果只有一种情况:结论成立判断分类变量X与Y之间是否有关结果有两种可能:有关或无关构造两种情况H 0 :结论成立H1 :结论的反面成立Ho: X与Y之间无关(独立)Hi : X与Y之间有关理论依据矛盾双方不可能同时成立 但是有且只有一个成立在一次试验中,小概率事件 (观测值k大于等 于临界值ko)几乎是不可能发生的操作步骤1)假设H。的反面H1成立2)推导矛盾,从而 Hr不成立3)由Hi不成立说明Ho成立1)确定置信水平,找到临界值 ko2)提出原假设H。,并假设H。成立,3)计算统计量K

7、2的观测值k4)通过比较k与ko的大小给出结论:k小则有利于H。成立,k大有利于Hi成立3.独立性检验的一般步骤是什么?由于教材一边解决问题,一边做讲解,因此结题思路显得有点散。然而细心提炼则不难总结出步骤,具体可大致分为4个阶段:提出原假设 H。:两个分类变量独立(无关),备择假设Hi:两个分类变量有关,并假设H。成立;Ho出错,从而接受Hi ;若k ko时,我们 确定允许犯错误的概率的上界,找到临界值k0 ;在H。下,计算K2的观测值k ;若k心,此时小概率事 件发生,我们认为在一次试验中,小概率事件是不可能发生,所以假设 没有充分理由拒绝 H。,也就没办法接受 Hi了 .其中两个步骤属平

8、级关系,可以调换次序4.为什么在最后表达结论的时候要出现“在犯错误的概率不超过XX的前提下”这样的词这也是初学者较难理解的问题,原因就在于独立性检验的过程中存在一个小小的漏洞,就是假设“在一次实验中,小概率事件不发生”,而事实上,小概率事件是可能发生的(用反证法,如果始终不发生,就是不可能事件了),而正是因为这一点点漏洞,导致独立性检验的结果可能是错误的,但是犯错误的概率不会太大,我们就把犯错误的 最大概率等同于小概率事件发生的概率了。至于小概率事件所对应的临界值,贝U属于大学的研究范畴,在此不必做 过多解释四、教学特点与预期效果分析1. 教学特点 用学案辅助教学由于本节内容较散,理论部分较难

9、,故需教师精心设计学案,提前发放给学生,以提高学生的预习效率 “问题串”为主,“讲授式”为辅的教学模式在最初定夺本节课教学模式时比较为难,一方面,按照新课标的理念,注重学生自主探究为主,教师仅仅是引 导者(实践证明这有利于学生学会“学习”,尤其是提高自学能力和合作学习能力),然而另一方面,本节内容理论难度较大,而且涉及到很多大学数学的内容,凭高中学生的数学水平难以完成自主探究因此,在理论部分,还得需要教师讲,教师的“讲授”成为了无奈的选择 不过好在课程标准中,不要求学生掌握这部分深奥的理论, 只要体会独立性检验的思想,掌握独立性检验的操作步骤因此,最终定下来的教学模式是“问题串为主,讲授式为辅”的模式在“问题串”的指引下,学生研究出解决问题所需要收集的数据,并自行研究课本上给出的解题过程,提炼出 解决问题的操作步骤,然后再由教师讲解操作规程背后的理论依据 游戏式导入本节课采用“有奖竞猜”的游戏方式作为课堂导入,提高了学生的学习热情奖品为本节课的录像光盘,也有一定的纪念意义 充满生活气息的数学课堂在课程标准理念下,“数学在生活中的应用”地位空前提高,教材中引入、例题甚至是课后习题的编写,都有大量生活的影子而本节课独立性检验正是一个贴近生活的数学范畴,它可以解决两件扑朔迷离事情之间 到底有关还是无关的问题因此本课从引入(吸烟与患肺癌)到例题(秃顶与心脏病)到练

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论