版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 中考数学找规律_ 座号_姓名_班级 一、棋牌游戏问题1 o后得到如图(2)所示,那么她所旋转的牌从左数起是( ) (2004年绍兴)4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180 第四张 C第三张 D第一张A B第二张 炮相帅3图 2 (2004年河北省)小明背对小亮,让小亮按下列四个步骤操作: 第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 从右边一堆拿出一张,放入中间一堆;第三步. 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆第四步 . 这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是
2、 3 )上,相位于点(3,2)上,则炮位于点( ),如图(2004年泸州)(3)所示的象棋盘上,若帅位于点(12 D 12C 21B ),( A11 (,) (,) (2,2) 1 4(2004年江西南昌)图(4)是跳棋盘,其中格点上的黑色点为棋子, 剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A为已方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) A2步 B3步 C4步 D5步 二、空间想象问题 1 (2004年泸州)把正方体摆放成如图(5)的形状,若从上至下依次为第1层,第2层,第3层,则第
3、n层有个正方体. 2(2004年山东日照)如图(6),都是由边长为1的正方体叠成的图形。 例如第个图形的表面积为6个平方单位,第个图形的表面积为18个平方单位,第个图形的表面积是36个平方单位。依此规律,则第个图形的表面积 个平方单位。 3(2004年山东潍坊)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图(7),是一个正方体的平面展开图,2 则“祝”、“你”、“前”分别表示正方体的“锦”表示右面,“程”表示下面.若图中的“似”表示正方体的前面, . 祝 你 程 前 锦似 7)图( )图(84 观察下列由棱长为1的小立方体摆成的图形,寻找规律:(2004年山东
4、青岛).)1个看不见;如图(8)中:共有8个小立方体,其中7个看得见,个看得见,如图(8)中:共有1个小立方体,其中10个看不见;如图(8. 个 19中:共有27个小立方体,其中个看得见,8个看不见;,则第个图中,看不见的小立方体有 )的个图形(它的中间为一个白色的正三角形);在图(2)是一个黑色的正三角形,顺次连结它的三边的中点,得到如图(2)所示的第2 图(1 6每个黑色的正三角形中分别重复上述的作法,得到如图(3)所示的第3个图形。如此继续作下去,则在得到的第个图形中,白色的正三角形的个数是 )图(2 ) 图(3图(1) . 堆木料的根数是 。6 木材加工厂堆放木料的方式如图所示:依此规
5、律可得出第 3 、CDD 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点请你观察图中正方形ABC、AB21211212 . CBD每个正方形四条边上的整点的个数,推算出正方形ABCD四条边上的整点共有个 A103103101033 n、 根。 如图:是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即20)根时,需要的火柴棍总数为 ? ? ? ?3n? 2n?1n? 第20题图 . 支火柴棒,照这样的规律搭下个三角形需7个三角形需5支火柴棒,搭32 用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭 为正整数) (n nS去,搭n个三角形需要支火柴棒,那么
6、S关于的函数关系式是 10个圆组成,按照这样的规律排列下去,则1937个圆组成,第个图由2 如图,由等圆组成的一组图中,第1个图由1个圆组成,第个图由 _个图形由个圆组成。第9 4 )题图10第( 11 一个正方体的每个面分别标有数字1,2,3,4,5,6根据图1中该正方体A、B、C三种状态所显示的数字,可推出“?”处的数字是 12 下面是用棋子摆成的“上”字: 第一个“上”字 第二个“上”字 第三个“上”字 如果按照以上规律继续摆下去,那么通过观察,可以发现: (1)第四、第五个“上”字分别需用 和 枚棋子;(2分) (2)第n个“上”字需用 枚棋子(1分) 13. 将一张长方形的纸对折,如
7、图5所示可得到一条折痕(图中虚线)续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕如果对折n次,可以得到 条折痕 14 下图是某同学在沙滩上用石于摆成的小房子 5 块石子 n观察图形的变化规律,写出第个小房子用了 15 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛如图所示: 为庆祝“六 n )按照上面的规律,摆个“金鱼”需用火柴棒的根数为( n8n4?4?6n8?62n DB CA16. 下面是按照一定规律画出的一列“树型”图: 第17题图 经观察可以发现:图比图多出2个“树枝”,图比图多出5个“树枝”,图比图多出10个“树枝”,照此
8、规律,图比图多出_个“树枝” 17 柜台上放着一堆罐头,它们摆放的形状见右图: 2?3听罐头,第一层有 3?4听罐头, 第二层有4?5听罐头,第三层有 第16题图 nn (为正整数)层根据这堆罐头排列的规律,第n 有 听罐头(用含 的式子表示) 6 18. 按如下规律摆放三角形: (3)(2)(1) 则第(4)堆三角形的个数为_;第(n)堆三角形的个数为_. 19. 一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠子被盒子遮住的部分有_颗. 4)(图 n20 是用围棋棋子摆成的一列具有一定规律的 如图,图,图,图,“山”字则第山个“”字中的棋子个数是 图 图 图图 (
9、第20题) 7 21 。 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。依次规律,第5个图案中白色正方形的个数为 个第1 个第2 第3个 第09题图22 。 用同样大小的正方形按下列规律摆放,将重叠部分涂上颜色,下面的图案中,第n个图案中正方形的个数是 n=1 n=3 n=2 题图第17 是梯形(标注的数字为边长),按图中所示的规律,用23.如图,已知四边形ABCD2003个这样的梯形镶嵌而成的四边形的周长是_ 24.”形图L个“,个“8,第2L”形图形的周长是12 则第nL1Ll 在边长为的正方形网格中,按下列方式得到“”形图形第个“”形图形的周长是 . 形的周长是 8 25. 观
10、察下列图形,按规律填空: 1 1+3 4+5 9+7 16+_ 36+_ 26. 用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案: 个第3个第第12个 (1)第4个图案中有白色纸片 张; (2)第n个图案中有白色纸片 张. 27 观察下表中三角形个数变化规律,填表并回答下面问题。 问题:如果图中三角形的个数是102个,则图中应有_条横截线。 9 用黑白两种颜色的正六边形地面砖按下图所示的规律拼成若干个图28. )块个图案中有白色地砖( 第2个图案中有白色地砖( )块,第3,1.第1个图案中有白色地砖( )块 个图案中有白色地砖( )块10第个图案中有白色地砖( )块,.第n
11、2. n 129 个几何体中只有两个如图,下列几何体是由棱长为的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第 _ 个涂色的小立方体共有面 图 图 图 30. 。 14下列是三种化合物的结构式及分子式,如果按其规律,则后一种化合物的分子式应该是 H HHHHH HCHHCCCCHCHH HHHHHH10 CHCHHC46283 题)14(第 三、剪纸问题 1 如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是( ) 2),沿虚线对折一次得图,再对折一次得图,然后用剪刀沿图中的虚线(虚线与底边平行)剪去一个角,小强拿了一张正方形的纸如图(10 ) 再打开后
12、的形状应是( 3),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此11如图( 继续下去,根据以上操作方法,请你填写下表: N 操作次数 N 1 2 3 4 5 正方形的个数 4 7 10 11 四、对称问题 1 仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。 2 分析图(14),中阴影部分的分布规律,按此规律在图(14)中画出其中的阴影部分. (2)在44的正方形网格中,请你用两种不同方法,分别在图、图中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形 3在日常生活中,你
13、会注意到有一些含有特殊数学规律的车牌号码,如: 12 等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给以对称的美的感受,我们不妨把这样的牌照L12321鲁L80808 、鲁L22222、鲁 ) ( 叫做“数字对称”牌照。如果让你负责制作只以8和9开头且有五个数字的“数字对称”牌照,那么最多可制作 100个 个 D A2000个 B1000个 C200 4个点所作的所有直线的条2n个点中的任意SP2) 已知n(n个点P,P,P在同一平面内,且其中没有任何三点在同一直线上. 设表示过这n2n31 SSS数,显然,=1,S=3,=6,S=10,由此推断,=_n3425 5. 意大利著名数
14、学家斐波那契在研究兔子繁殖问题时,发现有这样一组数: ,13,52,3,81,1 其中从第三个数起,每一个数都等于它前面两上数的和。现以这组数中的各个数作为正方形的长度构造如下正方形: . 125132 11 112 11112 353 相应矩形的周长如下表所示:.个,正方形拼成如下矩形并记为、53再分别依次从左到右取2个、个、4个、 序号 y x 周长10 6 13 _ ,y= _ 若按此规律继续作长方形,则序号为的长方形周长是仔细观察图形,上表中的x= _ 五1 )的点阵图和相应的等式,探究其中的规律:观察图(13 )在和后面的横线上分别写出相应的等式;(1 22 1=1;2 ;1+3=2
15、 1+2+5=3; ; ; )图(13 个点阵相对应的等式2)通过猜想写出与第n.( 2 观察下列顺序排列的等式: 1,190 11,291 ,32129 ,43193 ,41945 _个等式(猜想:第nn为正整数)应为76271254332?1622?82128642?2?24222?的个位数字,观察下列算式:3. ,通过观察,用你所发现的规律确定 ) 是(. 8 D.6 . 4 . 2 ABC 14 241 +23=1, 观察下列各式:122 +24=2, 2 23 3,+2 35= 。 请你将猜想到的规律用自然数n(n1)表示出来: 5. 观察下列各式,你会发现什么规律?22 576 1
16、 354 1 2 1 1113=12 。 请将你发现的规律用只含一个字母的表达式表示出来: 6 、 观察下列不等式,猜想规律并填空:11 22222222 ) + (2) 21+ 2 12; 88222222 2 + ) + ( 2) 3 2(-23; 8222222 2)( + () 3) 3) 2(4)(; (4)+ (b) a + b _(a7. 观察下面一列数:2,5,10,x,26,37,50,65,根据规律,其中x表示的数 是 。 8 观察数列1,1,2,3,5,8,x,21,y,则2x-y=_ 22222222?7?333?25?412?0?1?1?9 、 、 观察下列等式: 、
17、 用含自然数n的等式表示这种规律为 。 15 223344aa222210?10?4?32?310?4?2(a、b为正整数),则ab, 已知: ,若 , 。 33881515bb 11 如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1的规律报数,那么第2007名学生所报的数是 12 数字解密:第一个数是3=21,第二个数是5=32,第三个数是9=54,第四个数是17=98,观察并猜想第六个数是 。 13.观察下列等式: 21?1 22?31 23?51?3 1?3?5?2n?1?_.(n为正整数)根据观察可得: 14、 古希腊数学家把数1,3,
18、6,10,15,21,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。 15. 观察下列等式9-1=8 16-4=12 25-9=16 36-16=20 这些等式反映自然数间的某种规律,设n(n1)表示自然数,用关于n的等式表示这个规律为 . 16. 观察下列等式: 第一行 3=41 第二行 5=94 第三行 7=169 第四行 9=2516 16 按照上述规律,第n行的等式为_ aaaaa?2a171为( , ,从第二个数开始,每一个数都等于,则 有一列数与它前面那个数的倒数的差,若,), 31220071n12007?21 2 18 观察下列等式: 22222
19、2139?41?40?4?60?2?56?48?52?5064, , , 22227?97?65?75?7090?583 , ?nm 请你把发现的规律用字母表示出来: 19 观察下列各式: 2311? 2333?21? 2233613?2? 2333310?3?1?24 3333?3101?2? 猜想: 20 观察下列等式: ;4916=33 ; ; 1=1516; 254=21 369=27 17 1n 。 用自然数n(其中 )表示上面一系列等式所反映出来的规律是 111111 21.,. ,按此规律排列下去,这列数中的第7个数是 按一定的规律排列的一列数依次为: 3515262310 22
20、222222227?333?2?1?02?15?14? 、 观察下列等式: 、 、 。 用含自然数n的等式表示这种规律为 、23 小王利用计算机设计了一个计算程序,输入和输出的数据如下表: 输入 1 2 3 4 5 41235 输出 26171025 24. 观察下列各式,你会发现什么规律? 222 16 1 1113=127 3541 5 。 请将你发现的规律用只含一个字母的表达式表示出来: n25. )b(a?( n为非负数)展开式的各项系数的规律。例如:我国宋朝数学家杨辉在他的著作祥解九章算法中提出右表,此表揭示了 0?1?b)(a,它只有一项,系数为1; 1?a?b(a?b),它有两项
21、,系数分别为1,1; 222b?2a(?b)ab?a,它有三项,系数分别为1,2,1; 32233ba3b?3?ab?ba(?)a 331,它有四项,系数分别为,;1 18 4)ba?( 。 根据以上规律, 展开式共有五项,系数分别为 25 德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数): 1第一行 111第二行 22111第三行 3631111第四行 41212411111 第五行 55202030 根据前五行的规律,可以知道第六行的数依次是: 19 历年初中数学找规律题(答案) 一、棋牌游戏问题1、A 2、5 3、C 4、B 如图中红棋子所示,根据规
22、则: 点A从右边通过3次轴对称后,位于阴影部分内; 点A从左边通过4次轴对称后,位于阴影部分内 所以跳行的最少步数为3步 二、空间想象问题 1、n(n+1)/2 解析:等差数列 第n层有正方体1+2+3+n=n(n+1)/2个 2、A 结合图形,发现: 第个图形的表面积是(1+2+3+4+5)6=90 故选A 3、后面、上面、左面 4、125 解析:n=1时,看见的小立方体的个数为1;看不见的小立方体的个数为0个; n=2时,看见的小立方体的个数为222=8个;看不见的小立方体的个数为1个; n=3时,看见的小立方体的个数为333=27个;看不见的小立方体的个数为222=8=8个; n=4时,
23、看见的小立方体的个数为444=64个;看不见的小立方体的个数为333=27个; n=6时,看见的小立方体的个数为666=216个;看不见的小立方体的个数为555=125个; 故应填125个 5、121 20 个,黑三角形y个,解析:设白三角形x ,y=1;则:n=1时,x=0 个白三角形能分割出3个黑三角形)时,x=0+1=1,y=3;(1n=2 个黑三角形又被分割成3*3=9个黑三角形)x=3+1=4,y=9;(3n=3时, 个黑三角形又被分割成9*3=27个黑三角形)x=4+9=13,y=27;(9n=4时,. ,y=81;n=5时,x=13+27=40 x=40+81=121当n=6时,
24、 121所以白的正三角形个数为:28 6、 s则解析:设木料根数为 s=1+2=3;第一堆 s=1+2+3=6;第二堆 s=1+2+3+4=10;第三堆 ;) Sn=(a1+an)n/2,n为一共有几项(若公差d=1时:堆s=1+2+3+(n+1)= (n+1)(n+2)/2 第n s= (6+1)(6+2)/2 =28当n=6时, C故选80 7、 解析:个正方形上的整点第n个正方形上的整点个数是24;所以 个正方形上的整点个数是8;第2个正方形上的整点个数是16;第3第1 80 个。=8n,第10个正方形上的整点个数是:个数是:4+4(2n-1) 分解 整点数 n 8 1 8 1 8 2
25、16 2 8 3 3 24 8 4 32 4 21 8 5 40 5 80个。正方形A10B10C10D10四条边上的整点共有所以整点数为n8630 、8 ;31解析:n=1时,有1个三角形,需要火柴的根数为: );3(1+2n=2时,有3个三角形,需要火柴的根数为: );3(1+2+3n=3时,有6个三角形,需要火柴的根数为: ; )=6303(1+2+3+4+20n=20时,需要火柴的根数为: 故答案为:630s=2n+1 、9217 、10个图形由,第9个图由7+26=19个圆组成,第1个图形有1个圆,第2个图由1+6=73解析:观察分析可得:第 1+6+12+18+24+30+36+4
26、2+48=217个圆6 11、22 18、12、(1)S=4n+2 2)( 6个棋子,第1个“上”字用 个;1个多用了4第2个“上”字用10个棋子,比第 个2个多用了4第3个“上”字用14个棋子,比第 个每一个比上一个多用4 个个“上”字需用4n+2所以第n 故答案为:S=4n+2 15条13、(1) );(次对折,折痕为12-1=1 (2)第1 )1+2;(4-1=1第2次对折,折痕为2 8-1=1)第3次对折,折痕为;(2?12n1n2-1?221?22? 第n次对折,折痕为22 2-4 、n=14)?2(n2-4 解析:5=32-4 12=42-4 21=52-4 32=62-4 =所以
27、第n个)(n?2A 15、37 16、个“树枝”,照此规10)比图(3)多出53)比图(2)多出个“树枝”,图(41由题意,图(2)比图()多出2个“树枝”,图(2+1 a-a=n律,nn+12+1=37 -a=6故答案为:ann+1 n+2)n+1)(17、(18、3n+2 分析:此题首先注意正确数出第一个图形中三角形的个数,然后进一步发现后边的图形比前边的图形多几个从而推广到一般 解:首先观察第一个图形中有5个后边的每一个图形都比前边的图形多3个则第n堆中三角形的个数有5+3(n-1)=3n+2 点评:此题考查了平面图形,主要培养学生的观察能力和空间想象能力 19、24 20、5n+2 2
28、1、5n+3 解析: 6n+3-n=5n+3白色为6n+3,个,共有正方形(包含黑色和白色)n第n个图形中共有黑色正方形22、4n-1 解析:根据题意分析可得:第1个图案中正方形的个数41-1=3个,第2个图案中正方形的个数42-1=7个,第n个图案中正方形的个数423 个n-16011 、23解析: 10013+2=3005;,上底为用2003个这样的梯形镶嵌而成的四边形为一个梯形,两腰为110013+1=3004下底为 故其周长为3005+3004+2=6011 答案6011 4n+424、412,有3个“L”形图形的周长L”形图形的周长12,有42+4=12第解析:观察可得:第1个“L,
29、有”形图形的周长841+4=8第2个“ n+4=4n+4”形图形的周长43+4=16第n个“L13 、25、9 ,5个图形中,是16+9解析:第36+13 个图形中,是第73n+1 、1326 ;根据分析可得图中有白色纸片个数的通项公式:1+3n (张);1+34=13所以第4个图中有白色纸片: 13张答:第4个图中有白色纸片16 27、 6个三角形;1)没有横线的时候,只有解析: 个三角形;有一条横线的时候,有62 个三角形;2条横线的时候,有63有 )个三角形6(n+1当横截线条数为n条时应有 =102,)让6(n+1)(2n=16解得 4n+228、 解析:观察可知:除第一个以外,每增加
30、一个黑色地板砖,相应的白地板砖就增加四个, n46n第个图案中有白色地面砖的块数是一个“以为首项,公差是的等差数列的第项”,24 ,第n个图案中有白色地面砖的块数是4n+2 29.8n-4 4个;解析:观察图形可知:图中,两面涂色的小立方体共有 共有12个;图中,两面涂色的小立方体 个图中,两面涂色的小立方体共有20 的形式,454都是4的倍数,可分别写成41,3204,12, =8n-4,2n-1几何体中只有2个面涂色的小立方体共有的块数为:4()n因此,第个 8n-4故答案为HC10 30、4 三、剪纸问题13,16,3n+1 、1、C 2、D 3 四、对称问题 21、E的对称图形、略 C
31、 3、 在日常生活中,你会注意到有一些含有特殊数学规律的车牌号码,如:解析: 等,这些牌照中的五个数字都是关于中间的一个数字“对称”的,给以对称的美的感受,我们不妨把这样的牌照叫、鲁L22222、鲁L12321鲁L80808 做“数字对称”牌照。如果让你负责制作只以8和9开头且有五个数字的“数字对称”牌照,那么最多可制作 4、 5、16;26;178 解:由分析知: 解析:第1个长方形的周长为6=(1+2)2; 第2个长方形的周长为10=(2+3)2; 第3个长方形的周长为16=(3+5)2; 第4个长方形的周长为26=(5+8)2; 25 )2;8+13第5个长方形的周长为42=( 13+2168=()2;第6个长方形的周长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省多校联考2024-2025学年高二上学期12月联考政治试题(含答案)
- 《解析工伤保险》课件
- 孕期屁股疼的健康宣教
- 孕期肚脐发黑的健康宣教
- 分泌性中耳炎的健康宣教
- 丝状角膜病变的临床护理
- 羊水过多的健康宣教
- 星迹步态的健康宣教
- 腺垂体功能减退症的临床护理
- 中耳癌的健康宣教
- 2024年度建筑工程有限公司股权转让合同3篇
- 2024-2025学年度上学期九年级十二月联考英语试卷
- 2024-2025学年六上科学期末综合检测卷(含答案)
- 2024年债权投资协议6篇
- 【MOOC】工程力学-浙江大学 中国大学慕课MOOC答案
- 2024-2025学年北师大版八年级数学上册期末综合测试卷(含答案)
- 2024广州租房合同范本
- 菏泽学院中外教育史(高起专)复习题
- 分数的初步认识(单元测试)-2024-2025学年三年级上册数学期末复习 人教版
- AI服务器BOM表解密报告
- 广东省梅州市2023-2024学年高一上学期期末考试 生物 含解析
评论
0/150
提交评论