等比数列的通项公式及性质_第1页
等比数列的通项公式及性质_第2页
等比数列的通项公式及性质_第3页
等比数列的通项公式及性质_第4页
等比数列的通项公式及性质_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2.4 等比数列,课前小练,an+1-an=d,d 叫公差,an= a1+(n-1)d,an=am+(n-m)d,课本P48的4个例子: 观察:请同学们仔细观察一下,看看以上、四个数列有什么共同特征,观察,一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示,其数学表达式,q0,思考,一、等比数列的概念,1.已知等比数列 an : (1) an 能不能是零? (2)公比q能不能是1? 2.用下列方法表示的数列中能确定 是等比数列的是 . 1,-1,1,(-1)n+1 ; 1,2,4,6; a,a,a,a;

2、已知a1=2,an=3an+1 ; 2a,2a,2a,2a. 3.什么样的数列既是等差数列又是等比数列,不能,能,非零的 常数列,思考,二.等比数列的通项公式,归纳猜想法,叠乘法,例3: 一个等比数列的第3项与第4项分别是12与18,求 它的第1项与第2项,练习2:P53A组第一题,等比数列通项公式的变形,已知等比数列的公比为q,第m项为 ,求,已知等比数列an中,a5=20,a15=5,求a20,解:由a15=a5q10,得,练习,解:由等比数列的通项公式的特点可得:q=10,a1=-30,解:n=1 a1=21=2 n=2 a2=22=4 可得:q=2,思考:你能判断它们的增减性吗,公比q

3、对数列的影响,五.小结,an+1-an=d,d 叫公差,an= a1+(n-1)d,an=am+(n-m)d,你还知道等差数列有什么性质吗,你能类比写出等比数列的性质吗,q叫公比,an=a1qn-1,an=amqn-m,三.等比中项,观察如下的两个数之间,插入一个什么数后者三个数就会成为一个等比数列,1)1, , 9 (2)-1, ,-4 (3)-12, ,-3 (4)1, ,1,3,2,6,1,在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,探究一,在等比数列an中,a2.a6=a3.a5是否成立? a32=a1.a5是否成立,证明,要积极思考哦,若m+n=s+

4、t ,则aman=asat,性质,2、在等比数列an中,an0, a2a4+2a3a5+a4a6=36, 那么a3+a5=_,1. 等比数列an中,a4=4,则a2a6等于 ( ) A.4 B.8 C.16 D.32,探究二,已知等比数列an首项a1, 公比q,取出数列中的所有奇数项,构成新的数列,是否还是等比数列? 取出a1 , a4 , a7 , a11 呢,性质:在等比数列中,把序号成等差数列的项按 原序列出,构成新的数列,仍是等比数列,1、在等比数列中a7=6,a10=9, 那么a4=_,等差数列,等比数列,性质1,性质2,性质3,an=am+(n-m)d,若n+m=p+q 则am+an=ap+aq,若n+m=s+t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论