2017年电大广播电视大学17春经济数学基础形成性考核册全部答案_第1页
2017年电大广播电视大学17春经济数学基础形成性考核册全部答案_第2页
2017年电大广播电视大学17春经济数学基础形成性考核册全部答案_第3页
2017年电大广播电视大学17春经济数学基础形成性考核册全部答案_第4页
2017年电大广播电视大学17春经济数学基础形成性考核册全部答案_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 随机变量的性质 1 主要内容 随机变量定义? 随机变量的独立性? ?随机变量的矩与相关系数 随机变量分布的峰度和偏度? ?随机变量的矩母函数和特征函数极限定理? 2 随机变量定义的界定观察一个随机现象,其随机事件有些是数随机变量的提出:?非数量性质的随机事件很难量性质,有些是非数量性质的。运用成熟的数学方法去处理,即使对数量方式刻画的随机事件由于缺乏规范性和统一性,在进行数学处理时通常也会存为此,人们提出了一种与事件的原始描述形态 在一些问题。相对应、易于数学处理、比较规范、并有许多共性的数学描 述方法,这就是所谓的随机事件的随机变量表示。上的事件进行数学化刻画以后,我们既 借助于随机变量对

2、?F 中的事件,又可以广泛借助于数评价可以利用概率测度PF 中的事件进行更全面、更深入的认识。学方法对随机变量的定义也必须遵循一定的规则。对于概率空注意:?F的所有随机事件皆可以用随机变量来描,尽管间(, ,P)FF中的随述,但我们只对评测中的事件感兴趣,而且也只有F中事件才能进行概率测机事件才是可测的,或者说只有对 度。3 定义F可测的), 是随机变量(或者1R:?定义 称映射FB -1(A)?A?,即?(R1),-1(A)=w|?(w) ?若?AF 是中的事件。 FB G 中的集合簇。我是?-1(A)| A?显然,(R1)GG生成?)称为由随机变量们把由代数生成的? (代可测的最小是使?代

3、数,记作的(),()? 数。4 多维随机变量 F,P)为概率空间,称?设(, (?1(w),?2(w),?n(w):?Rn是多维随机变量,当F可测的。 且仅当?的每个分量都是 的分布nR?:?同样,我们也可以定义多维随机变量n,定义 ? Rx = (x1,函数:对?,xn) F(x)= F(x1,xn)=P(w|?1(w)?x1 ,?n(w)?xn), 则称F为? 的n维联合分布函数。对m n,在联合分布函数中将其中n-m个变量用+?来代替,就可得到对应于? 的m个分量的边际分布函数。 例如:F(x1, +?,+?)=P(w|?1(w)?x1,?2(w)?+?,?n(w)? +?)是一维边际分

4、布函数,实质上也是分量?1的分布函数。 5 多维随机变量 若存在一个非负实函数f:Rn ?R1 ,使得对B(Rn),满足 ?A?P(A) =P(w?|?(w)?A ) = f(x)dx ?Ax?则称f为n维随机变量?的密度函数,此时n维随机变量的联合分布函数表示为 xxxn12?f(s,s,(x()?Fx,x),?,dsdss)dsF?n21n1n12 ?我们经常使用的概率分布有二项分布、Poission分-分2布、正态分布、对数正态分布、高斯分布、布、t-分布、F分布等。 6 随机变量的独立性 定义 F,P)(, 上的随机变量,?n为定义在, 设?1, ?2,B(R1),i=1,2, ,n若

5、对?Ai?,有 P(w|?1(w) ?A1 , ?2(w) ?A2, ?n(w) ?An)= n?i (w) P(w|?Ai ), ?i?12,1, 则称?n是相互独立的。 7 随机变量的独立性 另外,还有等价定义为:称?1, ?2,?n相互独立,若对任意实数x1, x2,xn,有 P(?1 ?x1, ?2 ?x2,?n ? xn)= P(?1 ? x1) P(?2? x2)P(?n ? xn) 上式等价于 F(x1, x2,xn)= F1(x1) F2(x2)Fn(xn), 其中,F是随机向量(?1, ?2,?n)的联合分布函数,F1 ,Fn分别为随机变量?1, ?2,?n的一维边际分布函数

6、。 8 随机变量的矩与相关系数 F,P)上的随机变量,?为概率空间(, 定义 设P P为?的k,则称 ?d|d+?若积分 |?kk? ;阶矩,记作E?k );k)?k阶中心矩E(E?同理,可定义? ;?为?的数学期望,记为E称一阶矩E?的方差,记作)为?22)E?称二阶中心矩E( ?或V;? 为称?的标准差。9 多维随机变量的数学期望和方差: 对维随机向量(?1, ?2,?, ?n),若每i (i=1,2,?个随机变量n)都有有限数学期望,则称 Cov(?i, ?j)=E(?iE?i)(?jE?j) = E?i?jE?iE?j , ( i?j ) 为随机变量?i与?j的协方差,或称为二阶混合中

7、心矩; 10 若?i,?j的方差V?i 和V?j非零有限,则定义?i与?j的相关系数为 ?)cov(,ji ?),(? ji1 ?)?V(V2 ji ?容易推理得0 |(i,j)| 1。11 方差-协方差矩阵: 我们称n阶方阵 ?Vcov(,)cov(?1n211? ?)cov(,cov()V,?1n222? ?Vcov(,)cov(? 2n2nn, ?,? )的方差-协方?维随机向量(n 为n21差矩阵,记为?,显然方差-协方差矩阵?为非负定的对称矩阵。同理,我们也可以得到由?(?i,?j)组成的相关系数矩阵。 12 数学期望和方差有一条重要性质: , ?,?相互独立,则 若?n12 E(?

8、 ? ? )= E? E? E? n n2121 nn2?c?V)c?V( iiii?1i?1 通过上式可以知道,当两个随机变量?与?相互独立时,?(?,?)=0,即两随机变量不相关。13 随机变量的峰度和偏度 F,P)上的某随机?为定义在概率空间(, 设变量,则用?的标准化的三阶中心矩来定义?的偏度,即 3?)E(E? ?S() 3 ?)(V2 的0,偏度不为所有对称分布的偏度都为0 分布曲线是右偏斜或左偏斜。 14 用?的标准化的四阶中心矩来定义?的峰度,即 ?)EE(?4?()K ?)(V2 ,厚尾分布30正态分布的偏度为,峰度为 3,甚至有无限峰度。的峰度大于 15 在实际应用中,也可

9、以用样本数据去估计偏度和峰度,以找到样本数据的变化规律。?uXn和,则样本均值 假设有样本数据1?ii?2分别为 方差 n1?Xu? ini?12n1?2?)?Xu(? i1?ni?116 ?s这样,样本的偏度 和峰度 分别为 kn1?3?)s?u(X i3?)(1?ni?14n1?)k?Xu( i4?)(1?ni?117 随机变量的矩母函数和特征函数 ?从前面的分布可以看出,我们可以用随机变量分布函数、数学期望、方差等数字特征来了解随机变量某些特征和统计规律。 ?数字特征是由随机变量的有阶矩决定的。随着矩阶数的提高,例如偏度和峰度,矩的直接计算越来越复杂,非常需要一个简便有效的计算工具,于是

10、特征函数和母函数就应运而生了。 ?特征函数是将数学中著名的Fourier变换应用到分布函数或密度函数而产生的。由于特征函数比分布函数具有更好的性质,例如连续性、可导性等,所以凭借这些良好特性和反演公式,我们既可以很方便用以求分布函数、各阶矩,也可以用来研究随机变量其他方面更多的规律。当处理离散型随机变量时,则用母函数更为方便,因为此时可以充分利用幂级数的性质而避免再引进更复杂的复函数积分。 18 定义:设为随机变量,则称数学期望 tX?et)?E( 为矩母函数。原点矩的求法:利用矩母函数可求得的各 阶矩,即对逐次求导并计算在点的值:tX?XeE(t)?tX2?t()EXe19 nntX?e?)EX(t nn?(n?1)?(0)EX 计算在 点的值得0t? 矩母函数的名称就来自此性质。 20 矩母函数: 定理:设相互独立的随机变量 X,X,Xr21 ?(t)t),(t),(,则其和 的矩母函数分别为r21 的矩母函数为 X?XY?X?(t)t)(t)()(t?rY21r12 由于一个随机变量的矩母函数不一定存在,故理论上更方便的是定义特征函数. 21 极限定理 通过概率理论得到的基本认识为:大量个体的随机现象的共同运动产生了非随机的规律,其中最主要的规律就是大数定律和中心极限定理。 ?大数定律的基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论