版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、如图,在正三角形中,分别是,上的点,则的面积与的面积之比等于( )A13B23C2D3 2、如图,在中,的垂直平分线交的延长线于点,则的长为( )A B CD23.提出问题:如图,有一块分布均匀的等腰三角形蛋糕(,且),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样)背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”尝试解决: AB C AB CB 图 1 C B 图 2 C (1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕
2、(2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C画了一条直线CD交AB于点D你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由(3)通过上面的实践,你一定有了更深刻的认识请你解决下面的问题:若ABBC5 cm,AC6 cm,请你找出ABC的所有“等分积周线”,并简要的说明确定的方法4.如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线点F问:(1) 图中APD与哪个三角形全等?并说明理由 (2) 求证:APE FPA (3) 猜想:线段PC、PE、PF之间存在什么关系?并说明理由BBAACOEDDECOF图1图2F5、如图1,在
3、中,于点,点是边上一点,连接交于,交边于点(1)求证:;(2)当为边中点,时,如图2,求的值;(3)当为边中点,时,请直接写出的值6、已知ABC=90,AB=2,BC=3,ADBC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示)(1)当AD=2,且点与点重合时(如图2所示),求线段的长;(2)在图中,连结当,且点在线段上时,设点之间的距离为,其中表示APQ的面积,表示的面积,求关于的函数解析式,并写出函数定义域; (3)当,且点在线段的延长线上时(如图3所示),求的大小ADPCBQ图1DAPCB(Q)图2图3CADPBQ7、如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为,
4、直线BC经过点,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、Q(1)四边形OABC的形状是 ,当时,的值是 ;(2)如图2,当四边形的顶点落在轴正半轴时,求的值;如图3,当四边形的顶点落在直线上时,求的面积(Q)CBAOxP(图3)yQCBAOxP(图2)yCBAOyx(备用图)(第26题)(3) 在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使?若存在,请直接写出点P的坐标;若不存在,请说明理由8、如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕
5、与矩形边的交点),再将纸片还原。 (1)当时,折痕EF的长为_;当点E与点A重合时,折痕EF的长为_;(2)请写出使四边形EPFD为菱形的的取值范围,并求出当时菱形的边长;(3)令,当点E在AD、点F在BC上时,写出与的函数关系式。当取最大值时,判断与是否相似?若相似,求出的值;若不相似,请说明理由。9、如图,在中,的面积为25,点为边上的任意一点(不与、重合),过点作,交于点设,以为折线将翻折(使落在四边形所在的平面内),所得的与梯形重叠部分的面积记为EDBCABCA(1)用表示的面积; (2)求出时与的函数关系式;(3)求出时与的函数关系式;(4)当取何值时,的值最大?最大值是多少? 10
6、、如图,已知一个三角形纸片,边的长为8,边上的高为,和都为锐角,为一动点(点与点不重合),过点作,交于点,在中,设的长为,上的高为(1)请你用含的代数式表示(2)将沿折叠,使落在四边形所在平面,设点落在平面的点为,与四边形重叠部分的面积为,当为何值时,最大,最大值为多少?11、如图,ABC是直角三角形,ACB=90,CDAB于D,E是AC的中点,ED的延长线与CB的延长线交于点F。(1) 求证:FD2=FBFC。(2) 若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由。12、正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直,(1)证明:;(2)设,梯形的面积为,求与之
7、间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积;(3)当点运动到什么位置时,求的值13、如图,在梯形ABCD中,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE若设运动时间为(s)()解答下列问题:(1)当为何值时,?(2)设的面积为(cm2),求与之间的函数关系式;(3)是否存在某一时刻,使?若存在,求出此时的值;若不存在,说明理由(4)连接,在上述运动过程中,五边形的面积是否发生变化?说明理由14、如图,已知直线与直线相交于点分别交轴于两点矩形的顶点分别在直线上,顶点都在轴上,且点与点重合(
8、1)求的面积;(2)求矩形的边与的长;(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围ADBEOCFxyy(G)15、ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.证明:BDGCEF;ABCDEFG图 (3)GFEDABCDEFG图 (1)ABCDEFG图 (2). 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在a和b的两个问题中选择一个你喜欢的问题解答. 如果两题都解,只以a的解答记分.a.
9、 小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了. 设ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .b. 小明想:不求正方形的边长也能画出正方形. 具体作法是: 在AB边上任取一点G,如图作正方形GDEF;连结BF并延长交AC于F;作FEFE交BC于E,FGFG交AB于G,GDGD交BC于D,则四边形DEFG即为所求.你认为小明的作法正确吗?说明理由.16、如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BAC=AGF=90,它们的斜边长为2,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围. (3)以ABC的斜边BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 废旧家电回收利用行业市场现状分析及未来三至五年行业预测报告
- 气体加工服务行业风险投资态势及投融资策略指引报告
- GB/T 37551.10-2024海洋能波浪能、潮流能及其他水流能转换装置第10部分:海洋能转换装置锚泊系统评价
- GB/T 44863-2024基于移动通信网的带内与共频带定位技术要求及测试方法
- 2024年微波干燥设备项目投资申请报告代可行性研究报告
- 2024年半柔半刚射频同轴电缆项目资金需求报告代可行性研究报告
- 古筝课件教学课件
- 幼儿多动课件
- 全新2024年度物联网解决方案研发与实施合同
- 2024年度福州地区住宅二手房转让合同2篇
- 库容库貌整理知识培训课件
- 实验室生物安全整改报告
- 项目服务协议合同书
- 《创意美术教学课件》
- 初中体育排球垫球教案
- 建筑施工QC小组提高隧道光面爆破开挖一次成型率成果汇报
- 时尚服装传播职业生涯规划书
- 航空专业学生职业规划书
- 新人教版高中地理必修一第四章第一节-常见的地貌类型
- 劳务分包队伍考核评定表
- ATC中文药物列表201707
评论
0/150
提交评论