第七讲-图像形态学处理ppt课件_第1页
第七讲-图像形态学处理ppt课件_第2页
第七讲-图像形态学处理ppt课件_第3页
第七讲-图像形态学处理ppt课件_第4页
第七讲-图像形态学处理ppt课件_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第 七 讲 图像形态学处理,西安电子科技大学机电工程学院 王 义 敏,形态学:生物学的分支,研究动植物的形态和结构,数学形态学是一门交叉学科,有严格的数学理论(集合代数和数论等),理论基础艰深,但基本观念比较简单。理论基础和所用语言为:集合论,图像中的集合:代表二值图像或者灰度(彩色)图像的形状。如:黑白图像中的黑像素集合是图像的完全描述,感兴趣目标区域的像素集合,一、数学形态学图像处理,数学形态学:分析几何形状和结构的数学方法,建立在集合代数的基础上,用集合论方法定量描述集合结构的学科。1985年以后成为分析图像几何特征的工具,数学形态学图像处理的基本思想:使用具有一定形态的结构元素,去度量

2、和提取图像中的对应形状,如边界、骨架、凸壳等,以达到对图像进行分析和识别的目的,数学形态学图像处理意义:可以简化图像数据,保持它们基本的形状特性,并除去不相干的结构,数学形态学的基本运算:膨胀、腐蚀、开启和闭合,击中击不中变换,二、基本概念,结构元素:任意大小,包含任意0、1组合的一个区域。结构元素中的任意一点都可以成为结构元的原点,形态学:从图像出发,研究物体目标的结构和拓扑关系,形态学图像处理:结构元素与图像进行逻辑运算产生新的图像的处理方法,结构元与图像的运算:类似卷积,但用逻辑运算代替乘加运算,结果为处理后图像的像素值,形态学处理效果:取决于结构元素的大小、形状与逻辑运算的方法,具有某

3、种性质的、确定的、有区别的事物的全集,用大写字母表示。不包含任何元素的集合称为空集,规定任何空集都只是同一个集合,记作,三、集合论的基本概念,2、子集,3、并集,1、集合的定义,在数字图像处理中,集合是图像中描述的对象或其他感兴趣特征的像素坐标,4、交集,5、补集,6、集合的差,7、位移,8、映像(集合的反射,集合的图解表示,A,B,Z,四、膨胀与腐蚀,1、膨胀(使图像扩大,解释:A 被 B 膨胀是所有位移 x 的集合, B 的映射与A至少有一个元素是重叠的。换言之,用 B 膨胀 A 得到的集合是B 的映射的位移与 A 至少有一个非零元素相交时 B 的原点 x 位置的集合。从而上式变为,膨胀的

4、另外定义为,膨胀的算法,1、用结构元素,扫描图像的每一个像素,2、用结构元素与其覆盖的二值图像做“与”运算,3、如果都为0,结果图像的该像素为0,否则为1,1、用3x3的结构元时,物体的边界沿周边增加一个像素,2、把目标周围的背景点合并到目标中,目标之间存在细小的缝隙,膨胀可能将不同目标连通在一起,3、填补分割后物体中的空洞,膨胀的作用,2、腐蚀(使图像缩小,解释:A 被 B 腐蚀是所有位移 x 的集合, 其中 B 平移 x 后仍包含于 A 中。换言之,用 B 腐蚀 A 得到的集合是B 完全包含在 A 中时 B 的原点位置的集合,腐蚀的另外定义为,向量的观点,位移的观点,1、用结构元素,扫描图

5、像的每一个像素,2、用结构元素与其覆盖的二值图像做与运算,3、如果结果都为1,结果图像的该像素为1,否则为0,腐蚀的算法,腐蚀的作用,1、用3x3的结构元时,物体的边界沿周边减少一个像素,2、消除掉图像中小于结构元大小的目标物体,3、若物体之间有细小的连通,选择适当的结构元,可以将物体分开,4、不同的结构元及其不同的原点,产生不同的结果,3、膨胀的运算,a、基于膨胀定义本身的运算,图像 A,结构元 B,原点位于结构元素中的膨胀操作,原点不在结构元素中的膨胀操作,增加的点,删除的点,保留的点,增加的点,保留的点,图像 A,结构元 B,b、基于向量运算的膨胀操作,设图像左上角的坐标为(0,0),则

6、:A =(1,1), (2,1), (2,2), (2,3), (3,2), (3,3), (4,3),B=(0,0), (1,0), (0,1,c、基于位移运算的膨胀操作,图像 A,结构元 B,原点位于结构元素中的膨胀操作,原点不在结构元素中的膨胀操作,增加的点,保留的点,增加的点,保留的点,删除的点,图像 A,结构元 B,A 相对位移B,A 相对位移B,此时膨胀的结果与A没有任何关系,即,增加的点,删除的点,图像 A,结构元 B,4、腐蚀的运算,a、基于腐蚀定义本身的运算,图像 A,结构元 B,原点位于结构元素中的腐蚀操作,原点不在结构元素中的腐蚀操作,保留的点,腐蚀掉的点,保留的点,腐蚀

7、掉的点,图像 A,结构元 B,b、基于向量运算的腐蚀操作,设图像左上角的坐标为(0,0),则:A =(1,1), (2,1), (2,2), (2,3), (3,2), (3,3), (4,2); B=(0,0), (1,0), (0,1,图像 A,结构元 B,c、基于位移运算的腐蚀操作,图像 A,结构元 B,原点位于结构元素中的腐蚀操作,原点不在结构元素中的膨胀操作,共同的点,B的映射,A的移位并求交,图像 A,结构元 B,B的映射,A的移位并求交,共同的点,腐蚀掉点,5、膨胀与腐蚀的对偶性,3x3结构元,6、膨胀与腐蚀的不足,改变了原目标物的大小,例一、膨胀的应用(二值图像中的应用,间断间

8、隔2个像素,间断连接 目标加粗,例二、腐蚀的应用(二值图像中的应用,图像内部边长为1、3、5、 7、9和15像素的正方形图像,结构元素进行一次腐蚀,结构元素进行一次膨胀,结构元素为13x13,主要目的“滤除掉小于13个像素的小目标,五、开操作与闭操作,1、定义,开操作为,关闭操作为,即:使用结构元素 B 对集合 A 的开操作是用 B 对 A腐蚀,然后用 B 对腐蚀结果进行膨胀,即:使用结构元素 B 对集合 A 的闭操作是用 B 对 A膨胀,然后用 B 对腐蚀结果进行腐蚀,开操作的另一定义为,2、开操作与闭操作的几何解释,结构元,腐蚀操作,膨胀操作,开操作示意,闭操作示意,3、开操作与闭操作的性

9、质,开操作的性质,闭操作的性质,由开闭的性质有:同一结构元对于同一幅图像的多次开闭操作等同于对图像的一次开闭操作,4、开操作与闭操作,结构元,开操作:使对象轮廓变得光滑,断开狭窄的间断和消除细的突出物,闭操作:使对象轮廓变得更为光滑,消除狭窄的间断和长细的鸿沟,消除小的孔洞并填补轮廓线中的断裂,开操作与闭操作优势,不明显改变目标面积的同时,平滑目标的边缘,腐蚀、膨胀、开与闭的比较,原始图像,腐蚀结果,膨胀结果,开运算,闭运算,例三、开闭操作(先开操作后闭操作构成噪声滤波器,B,噪声,消除背景噪声 指纹噪声增加,指纹噪声减除 指纹产生间断,指纹间断消弱 指纹纹路加粗,噪声斑点消除 指纹纹络间断,

10、例四、引述电路板,a)原始灰度图像;(b)二值化后的图像;(c)用开运算清除噪声;(d)用腐蚀和膨胀抽取各结点;(e)抽取骨架分离各线路;(f)线路、结点和端点的最终显示,六、击中或击不中变换,1、作用:形状检测(图像中的对象是彼此不相连的,2、表达式(有三种)为,B1是由与一个对象相联系的 B 元素构成的集合,B2 是与相应背景有关的 B元素的集合,相应有B1 =X , B2 =W - X,例四、形状检测,七、形态学的主要应用,1、边界提取,3x3结构元素获得单像素宽度边界,5x5结构元获得2或3个像素宽度的边界,原点,例五、形态学提取边界,简单的二值图象,单像素宽度边界,结构元为3x3,2

11、、区域填充,区域用1填充(非边界点为0,初始点,迭代终止,原点,填充结果,二值图象,选定区域填充后的图象,填充所有区域后的图象,例六、区域填充,初始点,3、连通分量的提取,连通分量 Y,初始点,迭代终止,结构元,起点,第一次迭代的结果,最终的结果,例七、使用连通分量检测包装食物中的异物,原始图,门限 处理,5x5腐 蚀后的 结果,连通分量中像素的数目,4、凸壳,如果连接集合A内任意两个点的直线段都在A的内部,则A 是凸形的,集合 A 的凸壳H是包含 A 的最小凸集合,求集合 A 的凸壳C(A)的形态学算法,迭代终止,结构元为,不考 虑点,原点,寻找几何凸壳的过程,凸壳显示每个 结构元素的属性,

12、凸壳,设定水平和垂直尺寸 大小使得凸壳尺寸最小,5、细化,细化过程定义为,细化过程的另一种定义为,细化常用的结构元,细化过程,收敛后 的结果,转换为具有m连通度的结果,6、粗化,粗化过程定义为,粗化过程的另一种定义为,粗化和细化是形态学上的对偶过程,为了将集合粗化,先求集合的补,通过对集合补的细化后,对细化结果求补,最后消除间断即获得集合的粗化,粗化过程的解释,A补的细化,A补的细化的补,最终A的粗化,7、骨架S(A,骨架示意图,a)若z是S(A)的点并且(D)z是在A内以z为圆心的最大圆盘,则不存在位于A中的能包含(D)z的更大圆盘,集合A,最大圆盘 的位置,不同线段的 最大圆盘,最终骨架,

13、由图有,b)圆盘(D)z在两个或更多的不同位置上与A的边界接触,A 的骨架通过腐蚀和开操作表达,表示对 A 的连续 k 次腐蚀,表示对Sk(A) 的连续 k 次膨胀,八、灰度级图像的形态学,内容:灰度级图像中的膨胀、腐蚀、开操作和闭操作,1、膨胀的定义,上式与二维卷积计算相比:最大值代替卷积求和,加法运算代替卷积相乘,2、腐蚀的定义,上式与二维相关计算式相似,最小值代替相关运算,减法代替乘法,3、膨胀、腐蚀的几何解释(以一维函数为例,一维函数,高度为A的结构元b,膨胀过程示意,原始图像,膨胀后的图像,腐蚀后的图像,例八、灰度级图像膨胀和腐蚀,结构元为5 x 5,A=1,膨胀图像明亮且暗小的细节

14、减弱或消除;腐蚀图像变暗 且尺寸小的明亮细节减弱或消除,4、开操作和闭操作,开操作性质,定义,闭操作性质,e的域是r的域的子集,且任何(x , y) e,有e ( x , y) r ( x , y,开操作与闭操作的几何解释,开 操 作,闭 操 作,灰度线,原始图像,开操作运算后的图像,闭操作运算后的图像,例九、灰度级图像开操作和闭操作,开操作后的图像:小的明亮的细节变小,而暗的细节没有 明显变化,闭操作后的图像:小的暗的细节变小,而明亮部分没有 明显变化,5、灰度级图像形态学的应用,1) 形态学图像平滑,形态学图像平滑:先进行形态学开操作,后进行形态学闭操作。目的:减少或除去人为明和暗的因素和

15、噪声,2) 形态学图像梯度,形态学梯度使输入图像中灰度级的跃变更为急剧,3) top-hat变换,形态学梯度使输入图像中灰度级的跃变更为急剧,用于增强阴影的细节,例十、灰度级图像的形态学应用,原始图像,形态学梯 度图像,进行一次 top-hat变 换的图像,形态学平 滑图像,例十一、灰度级图像的高帽变换处理,九、相关的形态学图像处理函数,1、基本的形态学处理:膨胀、腐蚀、开操作、闭操作、击中击不中变换,imdilate(I,SE) 形态学膨胀,imerode (I,SE) 形态学腐蚀,imopen (I,SE) 形态学开操作,imclose (I,SE) 形态学闭操作,bwhitmiss(A,B1,B2) 击中击不中变换,strel (sh

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论