版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、信息与通信工程学院模式识别实验报告班级: 姓名: 学号: 日 期: 2011年12月 实验一、Bayes分类器设计一、实验目的:1.对模式识别有一个初步的理解2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识3.理解二类分类器的设计原理二、实验条件:matlab软件三、实验原理: 最小风险贝叶斯决策可按下列步骤进行:1)在已知,i=1,,c及给出待识别的的情况下,根据贝叶斯公式计算出后验概率:j=1,,x 2)利用计算出的后验概率及决策表,按下面的公式计算出采取,i=1,,a的条件风险,i=1,2,a3)对(2)中得到的a个条件风险值,
2、i=1,,a进行比较,找出使其条件风险最小的决策,即则就是最小风险贝叶斯决策。四、实验内容 假定某个局部区域细胞识别中正常()和非正常()两类先验概率分别为正常状态:P()=0.9;异常状态:P()=0.1。现有一系列待观察的细胞,其观察值为:-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186
3、 4.2532 已知先验概率是的曲线如下图:类条件概率分布正态分布分别为(-2,0.25)(2,4)试对观察的结果进行分类。五、实验步骤:1.用matlab完成分类器的设计,说明文字程序相应语句,子程序有调用过程。2.根据例子画出后验概率的分布曲线以及分类的结果示意图。3.最小风险贝叶斯决策,决策表如下:状态决策106210重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的后验概率的分布曲线和分类结果,并比较两个结果。六、实验代码1.最小错误率贝叶斯决策(m1.m)x=-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7
4、287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 0.7431 -0.4221 -1.1186 4.2532 pw1=0.9; pw2=0.1;e1=-2; a1=0.5;e2=2;a2=2;m=numel(x); %得到待测细胞个数pw1_x=zeros(1,m); %存放对w1的后验概率矩阵pw2_x=zeros(1,m); %存放对w2的后验概率矩阵results=zeros(1,m);%存放比较结果矩阵for i = 1:m%计算在w1下的后验概率
5、pw1_x(i)=(pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2) ;%计算在w2下的后验概率pw2_x(i)=(pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2) ;endfor i = 1:m if pw1_x(i)pw2_x(i) %比较两类后验概率 result(i)=0;%正常细胞 else result(i)=1;%异常细胞 endenda=-5:0.05:5; %取样本点以画图n=numel
6、(a);pw1_plot=zeros(1,n);pw2_plot=zeros(1,n);for j=1:npw1_plot(j)=(pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2);%计算每个样本点对w1的后验概率以画图pw2_plot(j)=(pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2);endfigure(1);hold onplot(a,pw1_plot,co,a,pw2_plot,r-.);f
7、or k=1:m if result(k)=0 plot(x(k),-0.1,cp); %正常细胞用五角星表示 else plot(x(k),-0.1,r*); %异常细胞用*表示 end;end;legend(正常细胞后验概率曲线,异常细胞后验概率曲线,正常细胞,异常细胞);xlabel(样本细胞的观察值);ylabel(后验概率);title(后验概率分布曲线);grid onreturn %实验内容仿真:x = -3.9847, -3.5549,-1.2401,-0.9780, -0.7932, -2.8531,-2.7605, -3.7287, -3.5414 , -2.2692,-3
8、.4549,-3.075,-3.9934,2.8792,-0.9780,0.7932,1.1882 ,3.0682,-1.5799,-1.4885,-0.7431,-0.4221,-1.1186, 4.2532 disp(x);pw1=0.9;pw2=0.1;result=bayes(x,pw1,pw2);2.最小风险贝叶斯决策(m2.m)x=-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.
9、1882 3.0682-1.5799 -1.4885 0.7431 -0.4221 -1.1186 4.2532 pw1=0.9; pw2=0.1;m=numel(x); %得到待测细胞个数R1_x=zeros(1,m); %存放把样本X判为正常细胞所造成的整体损失R2_x=zeros(1,m);%存放把样本X判为异常细胞所造成的整体损失result=zeros(1,m); %存放比较结果e1=-2;a1=0.5;e2=2;a2=2;%类条件概率分布px_w1:(-2,0.25) px_w2(2,4)r11=0;r12=2;r21=4;r22=0;%风险决策表for i=1:m %计算两类风险
10、值R1_x(i)=r11*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)+r21*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2); R2_x(i)=r12*pw1*normpdf(x(i),e1,a1)/(pw1*normpdf(x(i),e1,a1)+pw2*normpdf(x(i),e2,a2)+r22*pw2*normpdf(x(i),e2,a2)/(pw1*normpdf(x(i),e1,a1
11、)+pw2*normpdf(x(i),e2,a2);endfor i=1:m if R2_x(i)R1_x(i)%第二类比第一类风险大 result(i)=0;%判为正常细胞(损失较小),用0表示 else result(i)=1;%判为异常细胞,用1表示 end enda=-5:0.05:5 ;%取样本点以画图n=numel(a);R1_plot=zeros(1,n);R2_plot=zeros(1,n);for j=1:n R1_plot(j)=r11*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,
12、a2)+r21*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2) R2_plot(j)=r12*pw1*normpdf(a(j),e1,a1)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)+r22*pw2*normpdf(a(j),e2,a2)/(pw1*normpdf(a(j),e1,a1)+pw2*normpdf(a(j),e2,a2)%计算各样本点的风险以画图endfigure(1);hold onplot(a,R1_plot,co,a,R2
13、_plot,r-.);for k=1:m if result(k)=0 plot(x(k),-0.1,cp);%正常细胞用五角星表示 else plot(x(k),-0.1,r*);%异常细胞用*表示 end;end;legend(正常细胞,异常细胞,Location,Best);xlabel(细胞分类结果);ylabel(条件风险);title(风险判决曲线);grid onreturn%实验内容仿真:x = -3.9847, -3.5549,-1.2401,-0.9780, -0.7932, -2.8531,-2.7605, -3.7287, -3.5414 , -2.2692,-3.45
14、49,-3.075,-3.9934,2.8792,-0.9780,0.7932,1.1882 ,3.0682,-1.5799,-1.4885,-0.7431,-0.4221,-1.1186, 4.2532 disp(x);pw1=0.9;pw2=0.1;result=bayes(x,pw1,pw2);七、实验结果1.最小错误率贝叶斯决策后验概率曲线与判决显示在上图中后验概率曲线:带红色虚线曲线是判决为异常细胞的后验概率曲线青色实线曲线是为判为正常细胞的后验概率曲线根据最小错误概率准则,判决结果显示在曲线下方:五角星代表判决为正常细胞,*号代表异常细胞各细胞分类结果(0为判成正常细胞,1为判成异
15、常细胞):0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 12. 最小风险贝叶斯决策 风险判决曲线如上图所示:带红色虚线曲线是异常细胞的条件风险曲线;青色圆圈曲线是正常细胞的条件风险曲线根据贝叶斯最小风险判决准则,判决结果显示在曲线下方:五角星代表判决为正常细胞,*号代表异常细胞各细胞分类结果(0为判成正常细胞,1为判成异常细胞):1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1八、实验分析由最小错误率的贝叶斯判决和基于最小风险的贝叶斯判决得出的图形中的分类结果可看出,样本-3.9934、-3.9847在
16、前者中被分为“正常细胞”,在后者中被分为“异常细胞”,分类结果完全相反。分析可知在最小风险的贝叶斯判决中,影响结果的因素多了一个“损失”。在第一张图中,这两个样本点下两类决策的后验概率相差很小,当结合最小风险贝叶斯决策表进行计算时,“损失”起了主导作用,导致了相反的结果的出现。同时,最小错误率贝叶斯决策就是在0-1损失函数条件下的最小风险贝叶斯决策,即前者是后者的特例。九、实验心得通过本次实验,我对模式识别有了一个初步的理解,开始对模式识别的相关知识从书本上转移到了实践中,并跟据自己的设计对贝叶斯决策理论算法有一个深刻地认识,同时也理解二类分类器的设计原理。同时,之前只学过浅显的Matlab知
17、识,用Matlab实现数值计算的能力又一次得到了训练,对以后的学习和实验都有极大的帮助。实验二、基于Fisher准则线性分类器设计一、实验目的:1.进一步了解分类器的设计概念2.能够根据自己的设计对线性分类器有更深刻地认识3.理解Fisher准则方法确定最佳线性分界面方法的原理及Lagrande乘子求解的原理二、实验条件:matlab软件三、实验原理:线性判别函数的一般形式可表示成 其中 根据Fisher选择投影方向W的原则,即使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向W的函数为: 上面的公式是使用Fisher准则求最佳法线向量的解,该
18、式比较重要。另外,该式这种形式的运算,我们称为线性变换,其中式一个向量,是的逆矩阵,如是d维,和都是dd维,得到的也是一个d维的向量。向量就是使Fisher准则函数达极大值的解,也就是按Fisher准则将d维X空间投影到一维Y空间的最佳投影方向,该向量的各分量值是对原d维特征向量求加权和的权值。以上讨论了线性判别函数加权向量W的确定方法,并讨论了使Fisher准则函数极大的d维向量 的计算方法,但是判别函数中的另一项尚未确定,一般可采用以下几种方法确定如或者 或当与已知时可用当W0确定之后,则可按以下规则分类,使用Fisher准则方法确定最佳线性分界面的方法是一个著名的方法,尽管提出该方法的时
19、间比较早,仍见有人使用。四、实验内容:已知有两类数据和二者的概率已知=0.6, =0.4。中数据点的坐标对应一一如下: 数据:x = 0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4
20、070 -0.1717 -1.0573 -0.2099y = 2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340 1.8704 2.2948 1.7714 2.3939 1.5648 1.9329 2.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604z = 0.5338 0.8514
21、1.0831 0.4164 1.1176 0.5536 0.6071 0.4439 0.4928 0.5901 1.0927 1.0756 1.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.8784 0.9751 0.7840 0.4158 1.0315 0.7533 0.9548数据点的对应的三维坐标为x2 = 1.4010 1.2301 2.0814 1.1655 1.3740 1.1829 1.76
22、32 1.9739 2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.7909 1.3322 1.1466 1.7087 1.5920 2.9353 1.4664 2.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414y2 = 1.0298 0.9611 0.9154 1.4901 0.8200 0.9399 1.1405 1.0678 0.8050 1.2889 1.4601 1.4334 0.7091
23、 1.2942 1.3744 0.9387 1.2266 1.1833 0.8798 0.5592 0.5150 0.9983 0.9120 0.7126 1.2833 1.1029 1.2680 0.7140 1.2446 1.3392 1.1808 0.5503 1.4708 1.1435 0.7679 1.1288z2 = 0.6210 1.3656 0.5498 0.6708 0.8932 1.4342 0.9508 0.7324 0.5784 1.4943 1.0915 0.7644 1.2159 1.3049 1.1408 0.9398 0.6197 0.6603 1.3928 1
24、.4084 0.6909 0.8400 0.5381 1.3729 0.7731 0.7319 1.3439 0.8142 0.9586 0.7379 0.7548 0.7393 0.6739 0.8651 1.3699 1.1458数据的样本点分布如下图:五、实验步骤:1.把数据作为样本,根据Fisher选择投影方向的原则,使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,求出评价投影方向的函数,并在图形表示出来。并在实验报告中表示出来,并求使取极大值的。用matlab完成Fisher线性分类器的设计,程序的语句要求有注释。2.根据上述的结果并判断(1,1.
25、5,0.6)(1.2,1.0,0.55),(2.0,0.9,0.68),(1.2,1.5,0.89),(0.23,2.33,1.43),属于哪个类别,并画出数据分类相应的结果图,画出其在上的投影。3.回答如下问题,分析一下的比例因子对于Fisher判别函数没有影响的原因。六、实验代码(m3.m)x1 =0.2331 1.5207 0.6499 0.7757 1.0524 1.1974 0.2908 0.2518 0.6682 0.5622 0.9023 0.1333 -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315 0.3345 1.0650 -0.02
26、47 0.1043 0.3122 0.6655 0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152 0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099;x2 =2.3385 2.1946 1.6730 1.6365 1.7844 2.0155 2.0681 2.1213 2.4797 1.5118 1.9692 1.8340 1.8704 2.2948 1.7714 2.3939 1.5648 1.9329 2.2027 2.4568 1.7523 1.6991 2.4883 1.7259 2.0466 2.0226 2
27、.3757 1.7987 2.0828 2.0798 1.9449 2.3801 2.2373 2.1614 1.9235 2.2604;x3 =0.5338 0.8514 1.0831 0.4164 1.1176 0.5536 0.6071 0.4439 0.4928 0.5901 1.0927 1.0756 1.0072 0.4272 0.4353 0.9869 0.4841 1.0992 1.0299 0.7127 1.0124 0.4576 0.8544 1.1275 0.7705 0.4129 1.0085 0.7676 0.8418 0.87840.9751 0.7840 0.41
28、58 1.0315 0.7533 0.9548;%将x1、x2、x3变为行向量x1=x1(:);x2=x2(:);x3=x3(:);%计算第一类的样本均值向量m1m1(1)=mean(x1);m1(2)=mean(x2);m1(3)=mean(x3);%计算第一类样本类内离散度矩阵S1S1=zeros(3,3);for i=1:36 S1=S1+-m1(1)+x1(i) -m1(2)+x2(i) -m1(3)+x3(i)*-m1(1)+x1(i) -m1(2)+x2(i) -m1(3)+x3(i);end%w2的数据点坐标x4 =1.4010 1.2301 2.0814 1.1655 1.37
29、40 1.1829 1.7632 1.9739 2.4152 2.5890 2.8472 1.9539 1.2500 1.2864 1.2614 2.0071 2.1831 1.7909 1.3322 1.1466 1.7087 1.5920 2.9353 1.4664 2.9313 1.8349 1.8340 2.5096 2.7198 2.3148 2.0353 2.6030 1.2327 2.1465 1.5673 2.9414;x5 =1.0298 0.9611 0.9154 1.4901 0.8200 0.9399 1.1405 1.0678 0.8050 1.2889 1.4601
30、 1.4334 0.7091 1.2942 1.3744 0.9387 1.2266 1.1833 0.8798 0.5592 0.5150 0.9983 0.9120 0.7126 1.2833 1.1029 1.2680 0.7140 1.2446 1.3392 1.1808 0.5503 1.4708 1.1435 0.7679 1.1288;x6 =0.6210 1.3656 0.5498 0.6708 0.8932 1.4342 0.9508 0.7324 0.5784 1.4943 1.0915 0.7644 1.2159 1.3049 1.1408 0.9398 0.6197 0
31、.6603 1.3928 1.4084 0.6909 0.8400 0.5381 1.3729 0.7731 0.7319 1.3439 0.8142 0.9586 0.7379 0.7548 0.7393 0.6739 0.8651 1.3699 1.1458;x4=x4(:);x5=x5(:);x6=x6(:);%计算第二类的样本均值向量m2m2(1)=mean(x4);m2(2)=mean(x5);m2(3)=mean(x6);%计算第二类样本类内离散度矩阵S2S2=zeros(3,3);for i=1:36 S2=S2+-m2(1)+x4(i) -m2(2)+x5(i) -m2(3)+
32、x6(i)*-m2(1)+x4(i) -m2(2)+x5(i) -m2(3)+x6(i);end%总类内离散度矩阵SwSw=zeros(3,3);Sw=S1+S2;%样本类间离散度矩阵SbSb=zeros(3,3);Sb=(m1-m2)*(m1-m2);%最优解WW=Sw-1*(m1-m2)%将W变为单位向量以方便计算投影W=W/sqrt(sum(W.2);%计算一维Y空间中的各类样本均值M1及M2for i=1:36 y(i)=W*x1(i) x2(i) x3(i);endM1=mean(y);for i=1:36 y(i)=W*x4(i) x5(i) x6(i);endM2=mean(y);%利用当P(w1)与P(w2)已知时的公式计算W0p1=0.6;p2=0.4;W0=-(M1+M2)/2+(log(p2/p1)/(36+36-2);%计算将样本投影到最佳方向上以后的新坐标 X1=x1*W(1)+x2*W(2)+x3*W(3);X2=x4*W(1)+x5*W(2)+x6*W(3); %得到投影长度XX1=W(1)*X1;W(2)*X1;W(3)*X1;XX2=W(1)*X2;W(2)*X2;W(3)*X2; %得到新坐标%绘制样本点figure(1);plot3(x1,x2,x3,r*); %第一类hold onplot3(x4,x5,x6,gp)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋租赁合同违约处理
- 标准的建筑承包合同
- 手动叉车操作培训
- 《如何获得成功》课件 初中主题班会
- 《中国艾滋病防治》课件
- 大一新生规划书
- 电气用电安全培训
- 年产xxx矿产铝冶炼项目建议书
- 踏梯子项目可行性研究报告
- 年产xx智能浴缸项目可行性研究报告(项目计划)
- 品牌授权工厂生产授权书合同
- 小学各年级培养团结合作意识共同成长主题班会
- “双减”与“五项管理”(课件)主题班会
- 起亚福瑞迪发动机维修手册
- 23秋国家开放大学《广告设计》形考任务1-4参考答案
- 被动语态课件人教版英语九年级全册
- 大学生职业生涯规划与就业创业指导智慧树知到课后章节答案2023年下四川水利职业技术学院
- 传音控股招股说明书
- GB/T 19632-2023殡葬服务、设施、设备、用品分类与代码
- 发展汉语初级口语I-L17
- 铁路制服2023发放标准
评论
0/150
提交评论