下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、“恒成立问题”的解法常用方法:函数性质法; 主参换位法; 分离参数法; 数形结合法。一、函数性质法nmoxynmoxy1.一次函数型:给定一次函数,若在m,n内恒有,则根据函数的图象(直线)可得上述结论等价于;同理,若在m,n内恒有,则有.例1.对满足的所有实数,求使不等式恒成立的的取值范围。略解:不等式即为,设,则在上恒大于0,故有:,即.2.二次函数:.若二次函数(或)在R上恒成立,则有(或);.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。例2.已知函数,若对于任一实数,与的值至少有一个为正数,则实数的取值范围是( )A(0,2) B(0,8) C(2,8)
2、 D(,0)选B。例3.设,当时,都有恒成立,求的取值范围。解:设,(1)当时,即时,对一切,恒成立;-1oxy(2)当时,由图可得以下充要条件: 即 ; 综合得的取值范围为-3,1。例4.关于的方程恒有解,求的范围。解法:设,则.则原方程有解即方程有正根。.3.其它函数:恒成立(若的最小值不存在,则恒成立的下界0);恒成立(若的最大值不存在,则恒成立的上界0).例5设函数,其中常数, (1)讨论的单调性;(2)若当时,恒成立,求的取值范围。解:(2)由(I)知,当时,在或处取得最小值。;则由题意得 即 。二、主参换位法:某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出
3、参数与变量,但函数的最值却难以求出时,可考虑把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。例6已知函数,其中为实数(1)已知函数在处取得极值,求的值;(2)已知不等式对任意都成立,求实数的取值范围解:由题设知“对都成立,即对都成立。设(),则是一个以为自变量的一次函数。恒成立,则对,为上的单调递增函数。 所以对,恒成立的充分必要条件是,于是的取值范围是。三、分离参数法:利用分离参数法来确定不等式(,为实参数)恒成立时参数的取值范围的基本步骤:(1) 将参数与变量分离,即化为(或)恒成立的形式;(2) 求在上的最大(或最小)值;(3) 解不等式(或) ,求得的取值范围。适用题型
4、:(1)参数与变量能分离;(2)函数的最值易求出。例7当时,恒成立,则的取值范围是 .解: 当时,由得.令,则易知在 上是减函数,所以,所以,.例8.已知时,不等式恒成立,求实数的取值范围。解:原不等式即为:,要使上式恒成立,只需-a+5大于的最大值,因为,即或,解得a8.O四、数形结合(对于型问题,利用数形结合思想转化为函数图象的关系再处理):若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。例9若对任意,不等式恒成立,则实数的取值范围是( )(A) (B) (C) (D) 选B。例10.当)时, 恒成立,求a的取值范围。答案:.xyo12y1=(x-1)2y2=logax例11.已知关于x的方程有唯一解,求实数 的取值范围。解:原问题即为:方程有唯一解。令,,则如图所示,要使和在轴上有 唯一交点,则直线必须位于和之间。(包括但不包括)。当直线为时,;当直线为时,的范围为。另解:方程在方程上有唯一解有唯一解。五。根据函数的奇偶性、周期性等性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 干部能力 课件
- 《电商图片处理基础》高职全套教学课件
- 人教版手指课件
- 第六讲 欢度节日(看图写话教学)-二年级语文上册(统编版)
- 2024年辽宁省中考生物真题卷及答案解析
- 幼儿园小班音乐《合拢放开》教案
- 西京学院《影视作品分析》2021-2022学年第一学期期末试卷
- 西京学院《数据挖掘》2022-2023学年期末试卷
- 人教版八年级物理《光沿直线传播》
- 西京学院《继电保护装置》2021-2022学年期末试卷
- 稀土发光材料ppt
- 铁路物资管理模拟考试试题
- 初中历史课堂教学如何体现学生的主体地位
- 部编版三年级上册语文课件-习作六:这儿真美---(共19张PPT)部编版
- 2020湖南湖南省建筑施工开工安全生产条件承诺书
- 《白内障》PPT课件.ppt
- 先进先出(FIFO)
- 2020年四年级上册语文素材-全册课文梳理(1-27课)-人教(部编版)全册可修改打印
- 汽轮机本体检修规程
- 翻板滤池设计计算
- 红楼梦1——40回考点梳理
评论
0/150
提交评论