版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2章 随机变量及其分布章末分层突破,自我校对pi0,i1,2,ni1两点分布超几何分布P(B|A)0P(B|A)1P(BC|A)P(B|A)P(C|A)(B,C互斥)P(AB)P(A)P(B)A与B相互独立,则与B,A与,与相互独立P(Xk)Cpk(1p)nk(k0,1,2,n)E(aXb)aE(X)bE(X)pE(X)npD(X)p(1p)D(X)np(1p)D(aXb)a2D(X) 条件概率条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须搞清欲求的条件概率是在什么条件下发生的概率求条件概率的主要方法有:(1)利用条件概率公式P(B|A);(2)针对古典概型,可通过缩减基本事件
2、总数求解在5道题中有3道理科题和2道文科题如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率【精彩点拨】本题是条件概率问题,根据条件概率公式求解即可【规范解答】设“第1次抽到理科题”为事件A,“第2题抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.(1)从5道题中不放回地依次抽取2道题的事件数为n()A20.根据分步乘法计数原理,n(A)AA12.于是P(A).(2)因为n(AB)A6,所以P(AB).(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽
3、到理科题的概率P(B|A).法二:因为n(AB)6,n(A)12,所以P(B|A).再练一题1掷两颗均匀的骰子,已知第一颗骰子掷出6点,问“掷出点数之和大于或等于10”的概率【解】设“掷出的点数之和大于或等于10”为事件A,“第一颗骰子掷出6点”为事件B.法一:P(A|B).法二:“第一颗骰子掷出6点”的情况有(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共6种,故n(B)6.“掷出的点数之和大于或等于10”且“第一颗掷出6点”的情况有(6,4),(6,5),(6,6),共3种,即n(AB)3.从而P(A|B).相互独立事件的概率求相互独立事件一般与互斥事件、对立事件
4、结合在一起进行考查,解答此类问题时应分清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解特别注意以下两公式的使用前提:(1)若A,B互斥,则P(AB)P(A)P(B),反之不成立(2)若A,B相互独立,则P(AB)P(A)P(B),反之成立设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求P(X1)【精彩点拨】解决本题的关键是将复杂事件拆分成若干个彼此互斥事件的和或几个彼此相互独立事件的积事件,再利用相
5、应公式求解【规范解答】记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备(1)DA1BCA2BA2C,P(B)0.6,P(C)0.4,P(Ai)C0.52,i0,1,2,所以P(D)P(A1BCA2BA2C)P(A1BC)P(A2B)P(A2C)P(A1)P(B)P(C)P(A2)P(B)P(A2)P()P(C)0.31.(2)X1表示在同一工作日有一人需使用设备P(X1)P(BA0A0CA1)P(B)P(A0)P()P()P(A0)P(C)P()P(A1)P()0.60.52(10.
6、4)(10.6)0.520.4(10.6)20.52(10.4)0.25.再练一题2某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第1,2,3个问题分别得100分,100分,200分,答错得零分假设这名同学答对第1,2,3个问题的概率分别为0.8,0.7,0.6.且各题答对与否相互之间没有影响(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率【解】记“这名同学答对第i个问题”为事件Ai(i1,2,3),则P(A1)0.8,P(A2)0.7,P(A3)0.6.(1)这名同学得300分的概率为:P1P(A12A3)P(1A2A3)P(A1)P(2)P(A3)P(1)
7、P(A2)P(A3)0.80.30.60.20.70.60.228.(2)这名同学至少得300分的概率为:P2P1P(A1A2A3)P1P(A1)P(A2)P(A3)0.2280.80.70.60.564.离散型随机变量的分布列、均值和方差1.含义:均值和方差分别反映了随机变量取值的平均水平及其稳定性2应用范围:均值和方差在实际优化问题中应用非常广泛,如同等资本下比较收益的高低、相同条件下比较质量的优劣、性能的好坏等3求解思路:应用时,先要将实际问题数学化,然后求出随机变量的概率分布列对于一般类型的随机变量,应先求其分布列,再代入公式计算,此时解题的关键是概率的计算计算概率时要结合事件的特点,
8、灵活地结合排列组合、古典概型、独立重复试验概率、互斥事件和相互独立事件的概率等知识求解若离散型随机变量服从特殊分布(如两点分布、二项分布等),则可直接代入公式计算其数学期望与方差甲、乙、丙三支足球队进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局已知乙队胜丙队的概率为,甲队获得第一名的概率为,乙队获得第一名的概率为.(1)求甲队分别胜乙队和丙队的概率P1,P2;(2)设在该次比赛中,甲队得分为,求的分布列及数学期望、方差. 【导学号:97270055】【精彩点拨】(1)通过列方程组求P1和P2;(2)由题意求出甲队得分的可能取值,然后再求出的分布列,最后
9、再求出数学期望和方差【规范解答】(1)设“甲队胜乙队”的概率为P1,“甲队胜丙队”的概率为P2.根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,所以甲队获得第一名的概率为P1P2.乙队获得第一名,则乙队胜甲队且乙队胜丙队,所以乙队获得第一名的概率为(1P1).解,得P1,代入,得P2,所以甲队胜乙队的概率为,甲队胜丙队的概率为.(2)的可能取值为0,3,6.当0时,甲队两场比赛皆输,其概率为P(0);当3时,甲队两场只胜一场,其概率为P(3);当6时,甲队两场皆胜,其概率为P(6).所以的分布列为036P所以E()036.D()222.再练一题3(2015天津高考)为推动乒乓球运动的发展,
10、某乒乓球比赛允许不同协会的运动员组队参加现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名从这8名运动员中随机选择4人参加比赛(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望【解】(1)由已知,有P(A).所以,事件A发生的概率为.(2)随机变量X的所有可能取值为1,2,3,4.P(Xk)(k1,2,3,4)所以,随机变量X的分布列为X1234P随机变量X的数学期望E(X)1234.正态分布的实际应用对于正态分布问题,课标要求不是很高,只要
11、求了解正态分布中最基础的知识,主要是:(1)掌握正态分布曲线函数关系式;(2)理解正态分布曲线的性质;(3)记住正态分布在三个区间内取值的概率,运用对称性结合图象求相应的概率正态分布的概率通常有以下两种方法:(1)注意“3原则”的应用记住正态总体在三个区间内取值的概率(2)注意数形结合由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题某学校高三2 500名学生第二次模拟考试总成绩服从正态分布N(500,502),请您判断考生成绩X在550600分的人数【精彩点拨】根据正态分布的性质求出P(550x600),即可解决在550
12、600分的人数【规范解答】考生成绩XN(500,502),500,50,P(550X600)P(500250X500250)P(50050X50050)(0.954 40.682 6)0.135 9,考生成绩在550600分的人数为2 5000.135 9340(人)再练一题4为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(,22),且正态分布密度曲线如图21所示若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中属于正常情况的人数是()图21A997B95
13、4C819D683【解析】由题意,可知60.5,2,故P(58.5X62.5)P(X)0.682 6,从而属于正常情况的人数是1 0000.682 6683.【答案】D1(2015安徽高考)若样本数据x1,x2,x10的标准差为8,则数据2x11,2x21,2x101的标准差为()A8B15C16D32【解析】已知样本数据x1,x2,x10的标准差为s8,则s264,数据2x11,2x21,2x101的方差为22s22264,所以其标准差为2816,故选C.【答案】C2(2015全国卷)投篮测试中,每人投3次,至少投中2次才能通过测试已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互
14、独立,则该同学通过测试的概率为()A0.648 B0.432 C0.36 D0.312【解析】3次投篮投中2次的概率为P(k2)C0.62(10.6),投中3次的概率为P(k3)0.63,所以通过测试的概率为P(k2)P(k3)C0.62(10.6)0.630.648.故选A.【答案】A3(2015广东高考)已知随机变量X服从二项分布B(n,p)若E(X)30,D(X)20,则p_.【解析】由E(X)30,D(X)20,可得解得p.【答案】4(2015四川高考)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队(1)求A中学至少有1名学生入选代表队
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技型中小企业财务管理制度创新
- 小学美术教研工作总结
- 建筑公司材料采购合同
- 申报材料真实性承诺书
- 国际会议展厅服务提升方案
- 进度计划实施方案
- 关于川味零食的问卷调查
- DB11∕T 700-2020 番茄设施生产技术规程
- 银行业动员大会发言稿
- 多店合作协议书(2篇)
- 2024消防维保投标文件模板
- 遥感地学应用04-水体和海洋遥感
- DL∕T 2014-2019 电力信息化项目后评价
- 安全治本攻坚三年行动方案及重大事故隐患会议纪要(完整版)
- 东营山东东营市中医院(东营市传染病医院东营市精神卫生中心)招聘46人笔试历年典型考题及考点附答案解析
- 高级流行病学与医学统计学智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 油烟管道系统清洗合同
- 2024陆上风电场工程可行性研究报告编制规程
- 2024年重庆市中考数学试卷(B卷)附答案
- 民航服务心理案例分析
- 医院手术室空气质量控制标准
评论
0/150
提交评论