版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、共圆模型模型1 共端点,等线段模型 如图,出现“共端点,等线段”时,可利用圆定义构造辅助圆如图,若OAOBOC,则A、B、C三点在以O为圆心,OA为半径的圆上如图,常见结论有:ACBAOB,BACBOC.模型分析OAOBOC.A、B、C三点到点O的距离相等A、B、C三点在以O为圆心,OA为半径的圆上ACB是的圆周角,AOB是的圆心角,ACBAOB.同理可证BACBOC.(1)若有共端点的三条线段,可考虑构造辅助圆(2)构造辅助圆是方便利用圆的性质快速解决角度问题模型实例 如图,ABC和ACD都是等腰三角形,ABAC,ACAD,连接BD求证:1290. 证明 证法一:如图,ABACADB、C、D
2、在以A为圆心,AB为半径的A上ABC2.在BAC中,BACABC2180,2122180.1290.证法二:如图,ABACADBAC21ABAC,B、C、D在以A为圆心,AB为半径的O上延长BA与圆A相交于E,连接CEE1(同弧所对的圆周角相等)AEAC,EACE.BE为A的直径,BCE902ACE90.1290. 小猿热搜1如图,ABC为等腰三角形,ABAC,在ABC的外侧作直线AP,点B与点 D关于AP轴对称,连接BD、CD,CD与AP交于点E求证:12证明A、D关于AP轴对称,AP是BD的垂直平分线ADAB,EDEB又ABAC.C、B、D在以A为圆心,AB为半径的圆上EDEB,EDBEB
3、D. 22EDB.又12CDB. 12.2己知四边形ABCD,ABCD,且ABACADa,BCb,且2ab,求BD的长 解答以A为圆心,以a为半径作圆,延长BA交A于E点,连接EDABCD,CABDCA,DAECDA. ACAD,DCACDA. DAECAB.在CAB和DAE中CABDAE. EDBCbBE是直径,EDB90.在RtEDB中,EDb,BE2a,BD模型2 直角三角形共斜边模型模型分析如图、,RtABC和RtABD共斜边,取AB中点O,根据直角三角形斜边中线等于斜边一半,可得:OC=OD=OA=OB,A、B、C、D四点共圆() 共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆
4、;() 四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一模型实例例如图,AD、BE、CF为ABC的三条高,H为垂线,问:() 图中有多少组四点共圆?() 求证:ADFADE解答() 组C、D、H、E四点共圆,圆心在CH的中点处;D、B、F、H四点共圆,圆心在BH的中点处;A、E、H、F四点共圆,圆心在AH的中点处;C、B、F、E四点共圆,圆心在BC的中点处;B、A、E、D四点共圆,圆心在AB的中点处;C、D、F、A四点共圆,圆心在AC的中点处()如图,由B、D、H、F四点共圆,得ADF=1. 同理:由A、B、D、E四点共圆,得ADE=.ADFADE
5、例如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交ABC的外角平分线于点F,求证:FE=DE. 解答如图,连接DB、DF. 四边形ABCD是正方形,且BF是CBA的外角平分线,CBF=45,DBC=45, DBF=90又DEF=90,D、E、B、F四点共圆DFE=DBE=45(同弧所对的圆周角相等)DEF是等腰直角三角形FE=DE 1.如图,锐角ABC中,BC.CE是高线,DGCE于G,EFBD于F,求证:证明:由于RtBCE与RtBCD共斜边BC,B、C、D、E四点共圆DBC=DEG,同理,RtEDF与RtDGE共斜边DE,D、E、F、G四点共圆于是DEG=DFG,因此,DBC
6、=DFG于是FGBC2. 如图, BE.CF为ABC的高,且交于点H,连接AH并延长交于BC于点D,求证:ADBC.3.如图,等边PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边PQR怎样运动,点M为不动点.4.如图,已知ABC中,AH是高,AT是角平分线,且TDAB,TEAC.求证:AHD=AHE. 证明:(1)ADT=AHT=AET=90, D,E,H在以AT为直径的圆上, AHD=ATD,AHE=ATE, 又AT是角平分线,TDAB,TEAC, ATD=ATE, AHD=AHE 补充:】7、我们各种习气中再没有一种象克服骄傲那麽难的了。虽极力藏匿它,克服它,消灭它,但无论如何,它在不知不觉之间,仍旧显露。富兰克林8、女人固然是脆弱的,母亲却是坚强的。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《激光的基本技术》课件
- 养老机构入住长者心理咨询、精神支持服务流程1-1-1
- 水痘脑炎病因介绍
- (高考英语作文炼句)第18篇译文老师笔记
- 开题报告:智能现场工程师培养路径实证研究
- 开题报告:支持个性化学习的高校混合教学学生画像构建研究
- 开题报告:义务教育阶段学生作业质量监测与优化研究
- 某电厂扩建工程施工组织设计
- 开题报告:新质生产力背景下应用型高校数字化转型策略研究-以湖北省民办高校为实证对象
- 《货币资金严静》课件
- GB/T 2565-2014煤的可磨性指数测定方法哈德格罗夫法
- 新疆生产建设兵团2022-2023学年数学七上期末质量检测试题含解析
- 2022年中山市房地产市场年度报告-世联研究
- FZ/T 62039-2019机织婴幼儿睡袋
- 【人类命运共同体论文】浅谈“人类命运共同体”
- ARCGIS10基础培训课件
- 部编人教版语文三年级下册第七单元教材分析
- 萨提亚模式家庭治疗课件
- 小企业会计准则报表格式完整
- 弱电工程设计流程及客户需求调查表
- 超星学习通尔雅《人工智能》答案
评论
0/150
提交评论