心肺交互作用(simplified)(内容充实)_第1页
心肺交互作用(simplified)(内容充实)_第2页
心肺交互作用(simplified)(内容充实)_第3页
心肺交互作用(simplified)(内容充实)_第4页
心肺交互作用(simplified)(内容充实)_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、心肺交互作用,首都医科大学 北京朝阳医院 李文雄,1,医学参考,Basic physiology of heartlung interaction,Pump function: Preload at a given HR Pra or CVP Afterload Contractility,Return function: Blood volume(vein) stressed and unstressed Compliance Resistance,CO,2,医学参考,PreloadTransmural pressure,跨壁压(Ptm) 舱或血管内外压力差= 血管内收缩压 Ppl 非胸腔内

2、血管 外压=大气压(传感器的零点) 胸腔内血管 被胸膜腔内压包围 胸膜腔内压随通气周期变化 Ppl RV前负荷 自主呼吸或负压呼吸时Ppl 和血管内主动脉压力均下降 Ppl下降幅度大于主动脉压力下降幅度 Ptm实际增加LV后负荷、SV,3,医学参考,Four mechanisms participate in the cyclic changes of SV observed during mechanical ventilation. First, during insufflation, venous return decreases due to an increase in pleur

3、al pressure. This decrease in RV preload leads to a decrease in RV output that subsequently leads to a decrease in left ventricular output. Second, RV afterload increases during inspiration because the increase in alveolar pressure is greater than the increase in pleural pressure. However, left vent

4、ricular preload in-creases during insufflation because blood is expelled from the capillaries toward the left atrium . Finally, left ventricular afterload decreases during inspiration because positive pleural pressure decreases the intracardiac systolic pressure and the transmural pressure of the in

5、trathoracic part of the aorta,CCM.2009,4,医学参考,Ventricular afterload,Definition: the force opposing ejection Ventricular afterload is represented by the level of transmural pressure, in the course of systole, within either the aortic root (LV afterload) or the pulmonary artery trunk (RV after-load) T

6、he transmural rather than the intraluminal pressure must be considered because these great vessels as well as the ventricles are exposed to an extramural pressure (i.e., ITP) which is usually non atmospheric. The mechanisms whereby respiration interacts with LV and RV afterload are different,5,医学参考,

7、LV afterload,At the onset of spontaneous inspiration, the intraluminal pressure in the aortic root decreases less than does ITP, due to the connection of this vessel with extrathoracic arteries. As a result, aortic transmural pressure increases. With spontaneous breathing therefore, LV afterload is

8、greater in inspiration than in expiration . A symmetrical chain of events leads to a reduced LV afterload in the course of a transient increase in ITP, such as with positive pressure inflation of the lungs. Steady increases in ITP, as effected with PEEP, similarly unload the LV with potentially bene

9、ficial consequences in presence of left heart failure, as described in greater detail below (Sect. Effects of PEEP on cardiac output in Part II). Conversely, patients with obstructive sleep apnea have bouts of greatly negative ITP which increase LV after-load, thus contributing to LV hypertrophy,6,医

10、学参考,RV afterload,A seminal paper by Permutt shows that RV afterload is highly dependent on and increases with the proportion of lung tissue in West zone 1 or 2, as opposed to zone 3 conditions. Zones 1 or 2 exist whenever the extraluminal pressure of alveolar capillaries (which is close to alveolar

11、pressure, PA) exceeds the intraluminal value, leading to vessel compression. In zone 3 by contrast, intraluminal capillary pressure exceeds PA For hydrostatic reasons, zones 1 and 2 are more likely to occur in nondependent parts of the lung. Furthermore, respiratory changes in the intraluminal press

12、ure of alveolar capillaries tend to track changes in ITP and thus to decrease more than does PA during a spontaneous inspiration and to increase less than does PA on inflation of the lung with positive pressure. Thus, any increase in lung volume, whether in the context of spontaneous or mechanically

13、 assisted breathing , has the potential to promote the formation of zones 1 and 2 at the expense of zone 3, and thus to increase RV afterload. These considerations are of high clinical relevance, notably concerning the possible induction or aggravation of acute cor pulmonale by mechanical ventilatio

14、n, as described below (Sect. Mechanical ven-tilation and acute cor pulmonale in Part II,Intensive Care Med (2009) 35:4554,7,医学参考,Afterload:effect of lung inflation,肺膨胀影响CO 肺膨胀挤压肺泡内血管 肺膨胀必须增加胸膜腔内压 PvPA时影响很小,8,医学参考,Zones of the lung,Zone 1: PA Pa Pv Zone 2: Pa PA Pv Zone 3: Pa Pv PA,The zones of the l

15、ung divide the lung into three vertical regions, based upon the relationship between the pressure in the alveoli (PA), in the arteries (Pa), and the veins (Pv,9,医学参考,Zones of the lung,肺动脉和静脉压力与肺部区域有关 肺尖最低 肺底最高 直立位肺顶部Pa很可能低于PA,West J, Dollery C, Naimark A (1964). Distribution of blood flow in isolate

16、d lung; relation to vascular and alveolar pressures. J Appl Physiol 19: 71324,10,医学参考,Zones of the lung,全肺PA=02 cmH2O 直立位肺尖与肺底动脉压差= 20 mmHg 受重力影响 全肺静脉压= 5 mmHg 肺尖部静脉压=-5 mmHg 肺底部静脉压= +15 mmHg PAP =25/10 mmHg (Mean=15 mmHg) 肺尖部mPAP =5 mmHg 肺底部mPAP =25 mmHg,11,医学参考,Zones of the lung,正常人群全部肺区Pa PA Zone

17、 1 正常情况下不存在 正压通气时可以存在 PAPa 受肺泡压力影响区域血管彻底塌陷 血流消失 死腔通气,12,医学参考,Zones of the lung,Zone 2 位于心脏上方 3cm以上肺区 区域血流呈搏动状 毛细血管床静脉端阻塞无血流 动脉端压力超过PA时产生血流 如此反复循环 正常肺大部分位于Zone 3 存在连续血流 zone 1通气/血流比 zone 3,13,医学参考,Zones of the lung,PA Pv ( West zone II肺区) 右室后负荷随肺膨胀增加 随肺泡压1 : 1 增加 肺血管血流淤滞肺水,14,医学参考,The relation betwee

18、n lung volume and the pulmonary vascular resistance,As lung volume increases from residual volume (RV) to total lung capacity (TLC), the alveolar vessels become increasingly compressed by the distending alveoli, and so their resistance increases, whereas the resistance of the extra-alveolar vessels

19、(which become less tortuous as lung volume increases) falls. The combined effect of increasing lung volume on the pulmonary vasculature produces the typical “U shaped” curve as shown, with its nadir, or optimum, at around normal functional residual capacity (FRC,Whittenberger JL, et al. J Appl Physi

20、ol 1960;15:87882,15,医学参考,FrankStarling relationships between ventricular preload and stroke volume,A given change in preload induces a larger change in stroke volume when the ventricle operates on the ascending portion of the relationship (A, condition of preload dependence) than when it operates on

21、 the flat portion of the curve (B, condition of preload independence,16,医学参考,FrankStarling relationships between ventricular preload and stroke volume,Schematic representation of FrankStarling relationships between ventricular preload and stroke volume in a normal heart (A) and in a failing heart (B

22、). A given value of preload can be associated with preload dependence in a normal heart or with preload independence in a failing heart,17,医学参考,Return function,Heart,stressed volume,Unstressed volume,Height: Total BV,Emptying BV,Resistance,Compliance: Surface/Height relationship,Return function: Blo

23、od volume(veins/venules) stressed and unstressed Compliance Resistance,18,医学参考,Return function,正常静脉回心反流梯度= 4 8 mmHg Ppl 小量增加可显著改变静脉回心反流梯度 Ppl 0时的两种代偿过程 增加血容量 补液 一段时间后肾脏盐潴留代偿机制发挥作用 静脉容量血管收缩 Unstressed stressed volume stressed volume 迅速增加 stressed volume 1015 ml/kg,19,医学参考,Return function,Unstressed v

24、olume,Stressed volume,Stressed volume,Unstressed volume,Contraction of smooth muscle in vascular walls,Return to heart,20,医学参考,the interaction of venous return curve (upper left) and cardiac function curve (upper right) define the working cardiac output, venous return and right atrial pressure (Pra)

25、 values,Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 1955; 35:123 129,21,医学参考,For example,患者:中度肺疾病,PEEP=20 cmH2O Ppl可能增加8 cm H2O( 约7 mmHg) 相对于大气压 CVP =15 mmHg 室壁膨胀压=8 mmHg,22,医学参考,For example,心脏水平外周毛细血管压=15 mmHg 正常外周静脉回心阻力=4 8

26、mmHg 外周静脉静水压=19 23 mmHg 净液体滤过到组织间隙 背侧毛细血管额外静水压平均值= 7 cm 该部位外周静脉静水压=2630mmHg 高的心脏充盈压可能增加高PEEP患者CO 代价:血管内血浆液体渗出增加,23,医学参考,Model of the circulation showing factors that influence systemic venous drainage,RH 和胸腔内大静脉受Ppl影响,并随呼吸周期变化 吸气时膈肌下降 IAP 呼气时IAP正常(接近大气压) 外周静脉压不受呼吸周期影响 全身性静脉回流 (broken arrow)取决于驱动压(胸腔

27、外大静脉EGV压-RAP) 自主吸气时Ppl (RAP) ,IAP(EGV),24,医学参考,Effects of increase in airway pressure and volume,Right ventricle Decreased preload Increased afterload Reduced contractility Compression of heart in cardiac fossa,Left ventricle Decreased preload Decreased compliance Variable effects on (autonomous ner

28、vous system control of) contractility Decreased afterload Compression of heart in cardiac fossa,Mechanical ventilation alters intrathoracic pressures and thereby affects the cardiovascular system, mainly the right ventricle,25,医学参考,Cardiovascular effects of mechanical ventilation and application of

29、PEEP,26,医学参考,Effects of increase in airway pressure and volume,气道压力和容量对心脏负荷和功能的影响很复杂 对CO的影响取决于心脏和肺血管的基础功能 Paw 对前负荷的影响通常占优 右室后负荷损害性增加难以预测 血液动力学严重受损时应考虑 缺乏液体反应时应考虑 Echocardiography 可指导治疗 应考虑心肺交互作用对临床表现和治疗的影响,27,医学参考,Hemodynamic monitoringBlood pressure,BP (随呼吸机设置变化) 意味着 CO 、组织氧合 需要恢复先前通气设置 呼吸正压 而BP没有下

30、降并不意味着CO没有下降 CO 时神经-体液反射能迅速增加SRV以维持或增加BP BP 检测CO变化特异性高,敏感性低,28,医学参考,Hemodynamic monitoringCVP,CVP 不表示血容量 CVP 不能表示容量反应性 一个特定的CVP值不表明患者是否具有容量反应性 高CVP表明患者不太可能具有容量反应性 CVP 10 12mmHg,29,医学参考,Hemodynamic monitoringCVP,应用CVP时首先要基于临床和生化检查来判断患者是否需要优化血液动力学 其次是快速补液是否改善血液动力学 最后是当CVP随扩容增加时是否能增加CO CVP应在一定的安全范围内,30

31、,医学参考,Hemodynamic monitoringCVP,For example 患者:中度肺疾病,PEEP=20 cmH2O Ppl可能增加8 cm H2O( 约7 mmHg) 相对于大气压 CVP =15 mmHg 室壁膨胀压=8 mmHg,31,医学参考,Hemodynamic monitoringCVP,心脏水平外周毛细血管压=15 mmHg 外周静脉回心阻力=4 8 mmHg 外周静脉静水压=19 23 mmHg 净液体滤过到组织间隙 背侧毛细血管额外静水压平均值= 7 cm 该部位外周静脉静水压=2630mmHg 高的心脏充盈压可能增加高PEEP患者CO 代价:血管内血浆液体

32、渗出增加,32,医学参考,存在较大肺分流时,低CO影响PaO2 CO SvO2 CaO2 监测SvO2 or ScvO2有用 SvO2 or ScvO2很低表明增加CO将增加PaO2,33,医学参考,Diagnostic uses of ventilatory variation in vascular pressure waves-Respiratory variations in central venous pressure,Interaction of venous return and cardiac function curves with respiratory variatio

33、n,34,医学参考,Interaction of venous return and cardiac function curves with respiratory variations,35,医学参考,Evaluation of respiratory function,CVP 与 PAOP 可用来评价通气功能 PAOP 通气变异度可表明Ppl的变化27. 自主负压吸气时,PAOP 下降轻度低估了Ppl的下降 大多数病人肺充气时左室充盈增加 正压呼吸时,PAOP增加轻度高估了Ppl的增加,36,医学参考,Evaluation of respiratory function,CVP的变化基本

34、不反应Ppl的变化 右心容量来源于胸腔外 基本不随Ppl而变化 吸气触发时 CVP or PAOP出现大的负向变化 trigger 设置不当 Raw 肺顺应性 吸气驱动增强 需调整通气设置或增强镇静,37,医学参考,Evaluation of respiratory function,CVP随MV显著增加 表明Ppl 显著增加 胸壁顺应性 胸壁水肿 胸腔积液量大 IAP增加,38,医学参考,Evaluation of respiratory function,用力呼气使CVP增高 需观察多个呼吸周期 取呼气末获得值(最长和最低值) (Fig. 3b) 呼气阶段患者增加收缩呼气肌时,整个呼气阶段

35、心脏充盈压增加(Fig. 3c) 这些患者CVP 呼气末值误导前负荷的估价 取呼气开始时的CVP值可能更有效 患者试图谈话时消失 气管插管降低呼气肌收缩后消失,39,医学参考,Example of pulmonary artery occlusion pressure (Ppao), a reflection of left atrial pressure, and CVP in a patient on a pressure support of 6 cmH2O,40,医学参考,Conclusion,对于简单的MV患者间断观察BP和SpO2足够了 通气管理很困难时 监测血液动力学 试图增加P

36、aO2时需评价CO以保证MV不降低DO2 从CVP和BP波形可获得很多信息指导治疗,41,医学参考,Using heartlung interactions to assess fluid responsiveness during mechanical ventilation,42,医学参考,Respiratory variations in arterial pressure and stroke volume,控制通气吸气段 Ppl 静脉回心梯度 RV充盈和CO BP 肺充气 肺静脉排空 LV充盈增加LV CO Ppl LV后负荷 控制通气呼气段 BP SV,43,医学参考,Respir

37、atory changes in airway and arterial pressures in a mechanically ventilated patient,The pulse pressure (systolic minus diastolic pressure) is maximal (PPmax) at the end of the inspiratory period and minimal (PPmin) three heart beats later (ie during the expiratory period,SVRI=CI/(MAP-CVP,MAP=CI/SVRI

38、 + CVP,44,医学参考,Using heartlung interactions to assess fluid responsiveness during mechanical ventilation,Relationship between the respiratory changes in pulse pressure before volume expansion (Baseline ;PP) and the volume expansion-induced changes in cardiac index (y-axis) in 40 septic patients with

39、 acute circulatory failure. The higher PP is before volume expansion, the more marked the increase in cardiac index induced by volume expansion,Michard F. Am J Respir Crit Care Med 2000, 162:134138,45,医学参考,Using heartlung interactions to assess fluid responsiveness during mechanical ventilation,Rela

40、tionship between the respiratory changes in pulse pressure on ZEEP (y-axis) and the PEEP-induced changes in cardiac index (x-axis) in 14 ventilated patients with acute lung injury. The higher PP is on ZEEP, the more marked the decrease in cardiac index induced by PEEP,Michard F. Am J Respir Crit Car

41、e Med 1999, 159:935939,46,医学参考,47,医学参考,Using heartlung interactions to assess fluid responsiveness during mechanical ventilation,48,医学参考,Using heartlung interactions to assess fluid responsiveness during mechanical ventilation,49,医学参考,50,医学参考,Using heartlung interactions to assess fluid responsivene

42、ss during mechanical ventilation,Michard F. Am J Respair Crit Care Med 1999;159:935939,51,医学参考,Determinants of pulse variation,52,医学参考,Ventilatory variations in arterial pressure or stroke volume have also been shown not to be predictive in patients with smaller tidal volumes, increased West zone II

43、 conditions and in patients with pulmonary hypertension 24,25,26,53,医学参考,Hemodynamic changes during discontinuation of machanical ventilation in medical intensive care unit patients,54,医学参考,Hemodynamic changes during discontinuation of machanical ventilation in medical intensive care unit patients,5

44、5,医学参考,Hemodynamic changes during discontinuation of machanical ventilation in medical intensive care unit patients,56,医学参考,Hemodynamic changes during discontinuation of machanical ventilation in medical intensive care unit patients,57,医学参考,Patterns of cardiac function and plasma catecholamine level

45、s differed between patients who did or did not achieve spontaneous ventilation with a trial of continuous positive airway pressure. Cardiac function must be systematically considered before and during the return to spontaneous ventilation to optimize the likelihood of success,Susan KF. American Jour

46、nal of Critical Care. 2006;15:580-594,58,医学参考,summary,Effects of increase in airway pressure and volume on right and left ventricle Heart-lung interactions may play a role in the manifestations and treatment of a variety of disorders Using heartlung interactions (PPV) can assess fluid responsiveness

47、 during mechanical ventilation Cardiac function must be systematically considered before and during the return to spontaneous ventilation to optimize the likelihood of success,59,医学参考,谢谢,60,医学参考,Hypoxic pulmonary vasoconstriction in human lungs,Anaesthesiology 1997,86:308-315,61,医学参考,Hypoxic pulmona

48、ry vasoconstriction in human lungs,62,医学参考,Model of the circulation showing factors that influence systemic venous drainage,RH and intrathoracic great veins are subjected to pleural pressure (PPl ) , which varies throughout the respiratory cycle. IAP increases with inspiratory diaphragmatic descent, and normalises to atmospheric (Patmos ) with expiration. Peripheral venous pressure is unaffected by respiration and so remains at atmospheric pressure throughout the respiratory cycle. Systemic venous drainage (broken arrow)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论