解直角三角形(3)_第1页
解直角三角形(3)_第2页
解直角三角形(3)_第3页
解直角三角形(3)_第4页
解直角三角形(3)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、28.2 解直角三角形(第3课时,回顾与思考,1.测量高度时,仰角与俯角有何区别,2.解答下面的问题,如图,有两建筑物,在甲建筑物上从A到E点挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为45,条幅底端E点的俯角为30.求甲、乙两建筑物之间的水平距离BC,想一想,利用解直角三角形的方法解决实际问题时应注意什么,例5 如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里),解:如图 ,在RtAPC中,PCPAcos(9065,80cos

2、25,800.91,72.8,在RtBPC中,B34,当海轮到达位于灯塔P的南偏东34方向时,它距离灯塔P大约130.23海里,65,34,P,B,C,A,合作探究,解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina,但是,当我们要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度l,化整为零,积零为整,化曲为直,以直代曲的解决问题的策略,与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢,拓广与探究,我们设

3、法“化曲为直,以直代曲” 我们可以把山坡“化整为零”地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长l1,测出相应的仰角a1,这样就可以算出这段山坡的高度h1=l1sina1,在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,hn,然后我们再“积零为整”,把h1,h2,hn相加,于是得到山高h,以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容,1. 海中有一个小岛A,它的周围8海里内有

4、暗礁,渔船跟踪鱼群由西向到航行,在B点测得小岛A在北偏东60方向上,航行12海里到达D点,这时测得小岛A在北偏到30方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险,B,A,D,F,解:由点A作BD的垂线,交BD的延长线于点F,垂足为F,AFD=90,由题意图示可知DAF=30,设DF= x , AD=2x,则在RtADF中,根据勾股定理,在RtABF中,解得x=6,10.4 8没有触礁危险,练习,30,60,2. 如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求: (1)坡角a和; (2)坝顶宽AD和斜坡AB的长(精确到0.1m,解:(1)在RtAFB中,AFB=90,在RtCDE中,CED=90,利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论