版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.2 立体几何中的 向量方法(一),设直线l,m的方向向量分别为a,b,平面, 的法向量分别为u,v,则,二、讲授新课,1、用空间向量解决立体几何问题的“三步曲”。,(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义。,(化为向量问题),(进行向量运算),(回到图形问题),例1:如图1:一个结晶体的形状为四棱柱,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,那么以这个顶点为端点的晶体的对
2、角线的长与棱长有什么关系?,解:如图1,设,化为向量问题,依据向量的加法法则,,进行向量运算,所以,回到图形问题,这个晶体的对角线 的长是棱长的 倍。,思考:,(1)本题中四棱柱的对角线BD1的长与棱长有什么关系?,分析:,思考:,(2)如果一个四棱柱的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于 , 那么有这个四棱柱的对角线的长可以确定棱长吗?,分析:, 这个四棱柱的对角线的长可以确定棱长。,(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求两个平行平面的距离,通常归结为求两点间的距离),H,分析:面面距离,回归图形,点面距离,向量的模,解:, 所求的距离是,H,练习:
3、,如图2,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连结DE,计算DE的长。,例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线 (库底与水坝的交线)的距离AC和BD分别为 和 ,CD的长为 , AB的长为 。求库底与水坝所成二面角的余弦值。,解:如图,,化为向量问题,根据向量的加法法则,进行向量运算,于是,得,因此,设向量 与 的夹角为 , 就是库底与水坝所成的二面角。,所以,回到图形问题,库底与水坝所成二面角的余弦值为,例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线 (库底与水坝的交线)
4、的距离AC和BD分别为 和 ,CD的长为 , AB的长为 。求库底与水坝所成二面角的余弦值。,思考:,(1)本题中如果夹角 可以 测出,而AB未知,其他条件不变, 可以计算出AB的长吗?,分析:, 可算出 AB 的长。,(2)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦值吗?,分析:如图,设以顶点 为端点的对角线 长为 ,三条棱长分别为 各棱间夹角为 。,(3)如果已知一个四棱柱的各棱长都等于 ,并且以某一顶点为端点的各棱间的夹角都等于 ,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?,A1,B1,C1,D1,A,B,C,
5、D,分析:,二面角,平面角,向量的夹角,回归图形,解:如图,在平面 AB1 内过 A1 作 A1EAB 于点 E,,E,F,在平面 AC 内作 CFAB 于 F。,可以确定这个四棱柱相邻两个夹角的余弦值。,练习:,(1)如图4,60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长。,(2)三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,A1AB45,A1AC60,求二面角B-A A1-C的平面角的余弦值。,小结:,用空间向量解决立体几何问题的“三步曲”。,面面距离,回归图形,点面距离,向量的模,二面角,平面角,向量的夹
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024芦荟订购合同范文
- 2024美发店股份合同范本
- 2024年城市出行司机服务合同
- 2024年光伏发电项目宣传推广合同
- 2024红酒供货合同书范本
- 2024公司简单装修合同书样本
- 2024年供应链合作协议:共享资源互利共赢
- 2024年农民个人土地租赁合同样本
- 2024标准企业借款合同样式
- 2024年企业合并与收购交易合同
- 河道整治护岸施工方案
- 《寻访小动物》ppt课件
- 宁波市建设工程资料统一用表(2022版)1 通用分册
- 沙钢高炉及热风炉砌筑总施工组织设计
- 义乌中学浙江省物理学科基地
- 教师资格证考试《生物学科知识与教学能力》(初级中学)学科知识细胞
- 栈道栈桥工程施工组织设计
- 电脱盐成套技术介绍
- 搬运作业人员安全培训PPT课件
- 皮带通廊及皮带机施工方案
- 高端自动铺带机
评论
0/150
提交评论