期末测试卷九年级数学答案解析_第1页
期末测试卷九年级数学答案解析_第2页
期末测试卷九年级数学答案解析_第3页
期末测试卷九年级数学答案解析_第4页
期末测试卷九年级数学答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、期末测试卷九年级数学答案解析九年级上册数学单元测试卷答案初三网权威发布期末测试卷九年级数学答案解析,更多期末测试卷九年级数学答案解析相关信息请访问初中三年级网。【导语】以下是大为您整理的期末测试卷九年级数学答案解析,供大家学习参考。一、选择题1方程3x27x=0中,常数项是A3B7C7D0【考点】一元二次方程的一般形式【分析】一元二次方程的一般系数是:ax2+bx+c=0,其中,a是二次项系数,b是一次项系数,c是常数项,根据以上知识点得出即可【解答】解:方程3x27x=0中,常数项是0。故选D【点评】本题考查的是一元二次方程的一般形式,由一般形式确定常数项即可2配方法解方程x2+8x+7=0

2、,则方程可化为A2=9B2=9C2=16D2=16【考点】解一元二次方程-配方法【分析】方程常数项移到右边,两边加上16变形即可得到结果【解答】解:方程移项得:x2+8x=7。配方得:x2+8x+16=9,即2=9故选:B【点评】此题考查了解一元二次方程配方法,熟练掌握解方程的步骤与方法是解决问题的关键3方程x=x的两个根分别是Ax1=x2=1Bx1=0,x2=1Cx1=0,x2=2Dx1=0,x2=2【考点】解一元二次方程-因式分解法【专题】计算题【分析】先移项,再把方程左边分解得到x=0,原方程化为x=0或x11=0,然后解两个一次方程即可【解答】解:xx=0。x=0。x=0或x11=0。

3、x1=0,x2=2故选D【点评】本题考查了解一元二次方程因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解4如果一个正多边形绕它的中心旋转60才和原来的图形重合,那么这个正多边形是A正三角形B正方形C正五边形D正六边形【考点】旋转对称图形【专题】压轴题【分析】计算出每种图形的中心角,再根据旋转对称图形的概念即可解答【解答】解:A、正三角形绕它的中心旋转能和原来的图形的最小的度数是120度;B、正方形绕它的中心旋转能和原来的图形的最小的度数是90度;C、正五边形绕它的中心旋转能和原来的图形的最小的度数是7

4、2度;D、正六边形绕它的中心旋转能和原来的图形的最小的度数是60度故选D【点评】理解旋转对称图形旋转能够与原来的图形重合的最小的度数的计算方法,是解决本题的关键5在圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有A0个B1个C2个D3个【考点】中心对称图形;轴对称图形【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:圆、正方形既是轴对称图形,又是中心对称图形,共2个故选C【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合6从3个白球、2个红球中任意摸一个

5、,摸到红球的概率是ABCD【考点】概率公式【分析】由从3个白球、2个红球中任意摸一个,直接利用概率公式求解即可求得答案【解答】解:从3个白球、2个红球中任意摸一个。摸到红球的概率是:=故选A【点评】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比7如图,已知圆心角BOC=80,则圆周角BAC的度数是A160B80C40D20【考点】圆周角定理【分析】由圆心角BOC=80,根据圆周角的性质,即可求得圆周角BAC的度数【解答】解:圆心角BOC=80。圆周角BAC=BOC=40故选C【点评】此题考查了圆周角定理注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆

6、心角的一半8已知AB是O的直径,点C在O上,CBA=30,则CAB的度数是A30B45C60D90【考点】圆周角定理【分析】直接利用已知画出图形,进而利用圆周角定理得出A的度数【解答】解:如图所示:AB是O的直径。ACB=90。CBA=30。CAB=60故选:C【点评】此题主要考查了圆周角定理,正确得出C的度数是解题关键9如图所示,圆O的弦AB垂直平分半径OC,则四边形OACBA是正方形B是长方形C是菱形D以上答案都不对【考点】垂径定理;菱形的判定【专题】压轴题【分析】根据垂径定理和特殊四边形的判定方法求解【解答】解:由垂径定理知,OC垂直平分AB,即OC与AB互相垂直平分,所以四边形OACB

7、是菱形故选C【点评】本题综合考查了垂径定理和菱形的判定方法10下列哪一个函数,其图象与x轴有两个交点ABCD【考点】抛物线与x轴的交点【专题】计算题【分析】由题意得,令y=0,看是否解出x值,对A,B,C,D,一一验证从而得出答案【解答】解:A、令y=0得,移项得,方程无实根;B、令y=0得,移项得,方程无实根;C、令y=0得,移项得,方程无实根;D、令y=0得,移项得,方程有两个实根故选D【点评】此题考查二次函数的性质及与一元二次方程根的关系二、填空题11抛一枚骰子,6点朝上的概率为【考点】概率公式【分析】由抛一枚骰子,共有6种等可能的结果,分别为1,2,3,4,5,6,直接利用概率公式求解

8、即可求得答案【解答】解:抛一枚骰子,共有6种等可能的结果,分别为1,2,3,4,5,6。抛一枚骰子,6点朝上的概率为:【点评】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比12方程x23x+1=0的根的判别式=5【考点】根的判别式【专题】推理填空题【分析】根据方程x23x+1=0,可以求得根的判别式,从而可以解答本题【解答】解:方程x23x+1=0。=b24ac=2411=94=5故答案为:5【点评】本题考查根的判别式,解题的关键是明确根的判别式等于b24ac13如果点A是点B关于原点的对称点,那么a等于4【考点】关于原点对称的点的坐标【专题】计算题【分析】平面直角坐标

9、系中任意一点P,关于原点的对称点是,记忆方法是结合平面直角坐标系的图形记忆【解答】解:点A是点B关于原点的对称点。a=4【点评】关于原点对称的点坐标的关系,是需要识记的基本问题14已知圆锥的底面半径是2cm,母线长为3cm,则圆锥的侧面积为6cm2【考点】圆锥的计算【专题】压轴题【分析】圆锥的侧面积=底面周长母线长2【解答】解:底面半径是2cm,则底面周长=4cm,圆锥的侧面积=43=6cm2【点评】本题利用了圆的周长公式和扇形面积公式求解15如图,A、B、C的半径都是2cm,则图中三个扇形的面积的和为2【考点】扇形面积的计算【分析】根据三角形的内角和是180和扇形的面积公式进行计算【解答】解

10、:A+B+C=180。阴影部分的面积=2故答案为:2【点评】本题考查了扇形面积的计算,因为三个扇形的半径相等,所以不需知道各个扇形的圆心角的度数,只需知道三个圆心角的和即可16圆内接正六边形的边心距与半径之比是:2【考点】正多边形和圆【分析】设正六边形的边长为2,欲求半径、边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出【解答】解:如右图所示。设边长AB=2;连接OA、OB,作OGAB于G。多边形为正六边形。AOB=60。OA=OB。AOB是等边三角形。OA=AB=2。在RtBOG中,BG=AB=1。OG=。边心距与半径之比为:2故答案为:2【点评】本题考查了正多边形和圆;正

11、多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形三、解答题17解方程:2=9【考点】解一元二次方程-直接开平方法【分析】利用直接开平方法解方程得出答案【解答】解:2=9。2x1=3。解得:x1=2,x2=1【点评】此题主要考查了解一元二次方程,正确开平方是解题关键18二次函数y=2x2bx+3的对称轴是直线x=1,则b的值为多少?【考点】二次函数的性质【分析】根据对称轴方程,列出关于b的方程即可解答【解答】解:二次函数y=2x2bx+3的对称轴是直线x=1。x=1。b=4则b的值为4【点评】本题考查了二次函数的性质,熟悉对称轴

12、公式是解题的关键19如图,O的半径为10cm,AB是O的弦,OCAB于D,交O于点C,且CD=4cm,求弦AB的长【考点】垂径定理;勾股定理【分析】连接OA,求出OD,根据勾股定理求出AD,根据垂径定理得出AB=2AD,代入求出即可。【解答】解:连接OA。OA=OC=10cm,CD=4cm。OD=104=6cm。在RtOAD中,有勾股定理得:AD=8cm。OCAB,OC过O。AB=2AD=16cm【点评】本题考查了勾股定理和垂径定理的应用,关键是求出AB=2AD和求出AD长20在正方形网格中建立如图所示的平面直角坐标系xoyABC的三个顶点都在格点上,A、B、C将ABC绕点C逆时针旋转90得到

13、A1B1C1,在图中画出旋转后的A1B1C1【考点】作图-旋转变换【专题】作图题【分析】利用网格特点和旋转的性质画出点A、B、C的对应点A1、B1、C1即可得到A1B1C1【解答】解:如图,A1B1C1为所作【点评】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形21掷一个质地均匀的骰子,观察向下的一面的点数,求下列事件的概率:点数为2;点数为奇数;点数大于2且小于6【考点】概率公式【分析】根据概率的求法,找准两点:1、全部情况的总数;2、符合条件的情况数目;二者的

14、比值就是其发生的概率【解答】解:P=;点数为奇数的有3种可能,即点数为1,3,5,则P=;点数大于2且小于6的有3种可能,即点数为3,4,5。则P=【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=22如图,若AB是O的直径,CD是O的弦,ABD=55,求BCD的度数?【考点】圆周角定理【分析】连结AD,由AB是O的直径得到ADB=90,再根据互余计算出A的度数,然后根据圆周角定理即可得到C的度数【解答】解:连结AD,如图。AB是O的直径。ADB=90。ABD=55。A=9055=35。BCD=A=35【点评】本题考查了圆

15、周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆所对的圆周角是直角,90的圆周角所对的弦是直径23据某市车管部门统计,20XX年底全市汽车拥有量为150万辆,而截止到20XX年底,全市的汽车拥有量已达216万辆,假定汽车拥有量年平均增长率保持不变求20XX年底该市汽车拥有量;如果不加控制,该市20XX年底汽车拥有量将达多少万辆?【考点】一元二次方程的应用【专题】增长率问题【分析】假设出平均增长率为x,可以得出20XX年该市汽车拥有量为150,20XX年为150=216。即1502=216,进而求出具体的值;结合上面的数据20XX应该在20XX年的基

16、础上增长,而且增长率相同,同理,即为2162【解答】解:设该市汽车拥有量的年平均增长率为x根据题意,得1502=216解得x1=,x2=150=180答:20XX年底该市汽车拥有量为180万辆2162=答:如果不加控制,该市20XX年底汽车拥有量将达万辆【点评】此题主要考查了一元二次方程的应用,以及增长率问题,正确表示出每一年的拥有汽车辆数,是解决问题的关键24如图,抛物线y=ax2+bx+c经过A、B、C三点求抛物线的解析式;如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由【考点】待定系数法求二次函数解析式;二次

17、函数的性质;轴对称-最短路线问题【专题】计算题【分析】设交点式为y=a,然后把C点坐标代入求出a=,于是得到抛物线解析式为y=x2x+3;先确定抛物线的对称轴为直线x=,连结BC交直线x=于点P,如图,利用对称性得到PA=PB,所以PA+PC=PC+PB=BC,根据两点之间线段最短得到PC+PA最短,于是可判断此时四边形PAOC的周长最小,然后计算出BC=5,再计算OC+OA+BC即可【解答】解:设抛物线解析式为y=a。把C代入得a=3,解得a=。所以抛物线解析式为y=,即y=x2x+3;存在因为A、B。所以抛物线的对称轴为直线x=。连结BC交直线x=于点P,如图,则PA=PB,PA+PC=P

18、C+PB=BC,此时PC+PA最短。所以此时四边形PAOC的周长最小。因为BC=5。所以四边形PAOC周长的最小值为3+1+5=9【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解也考查了最短路径问题25如图,在O中,直径AB垂直于弦CD,垂足为E,连接AC,将ACE沿AC翻折得到ACF,直线FC与直线AB相交于点G直线FC与O有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论