版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,二次函数,y=a(x-h)2+k的图像和性质,雪山中学,余晓国,复习二次函数y=ax2的性质,开口向上,开口向下,|a|越大,开口越小,关于y轴对称,顶点坐标是原点(0,0),顶点是最低点,顶点是最高点,在对称轴左侧递减 在对称轴右侧递增,在对称轴左侧递增 在对称轴右侧递减,O,O,复习二次函数y=ax2+k的性质,开口向上,开口向下,a的绝对值越大,开口越小,关于y轴 (x=o)对称,顶点是最低点,顶点是最高点,在对称轴左侧,y随x的增大而减小 在对称轴右侧,y随x的增大而增大,k0,k0,k0,k0,(0,k),在对称轴左侧,y随x的增大而增大 在对称轴右侧,y随x的增大而减小,复习二次
2、函数y=a(x-)2的性质,开口向上,开口向下,a的绝对值越大,开口越小,直线,顶点是最低点,顶点是最高点,在对称轴左侧递减 在对称轴右侧递增,在对称轴左侧递增 在对称轴右侧递减,h0,h0,h0,h0,(,0),1.填表,复习回顾:,(0, 0),(1, 0),(- 1, 0),(0, 0),(0, 1),(0, - 1),向下,向下,向下,向上,向上,向上,x=0,x=0,x=0,x=0,x=1,x= - 1,(0,3),(0,-3),如何由,的图象得到,的图象。,2.上下 平移,、,x= - 2,(-2,0),(2,0),x= 2,如何由,的图象得到,的图象。,、,3.左右 平移,y=a
3、x2,y=a(x-h)2,y=ax2+k,y=ax2,k0,k0,上移,下移,左加,右减,说出平移方式,并指出其顶点与对称轴。,顶点x轴上,顶点y轴上,问题:顶点不在坐标轴上的二次函数又如何呢?,上正下负,左加右减,例题,例3.画出函数 的图像.指出它的开口方向、顶点与对称轴、,解: 先列表,再描点 后连线.,-5.5,-3,-1.5,-1,-1.5,-3,-5.5,直线x=1,解: 先列表,再描点、连线,-5.5,-3,-1.5,-1,-1.5,-3,-5.5,讨论,抛物线 的开口向下,对称轴是直线x=1,顶点是(1, 1).,抛物线 的开口方向、对称轴、顶点?,向左平移1个单位,向下平移1
4、个单位,向左平移1个单位,向下平移1个单位,平移方法1:,平移方法2:,二次函数图像平移,x=1,(2)抛物线 有什么关系?,y=2x2,y=2(x1)2,y=2(x1)2+1,在同一坐标系内画出y=2x2、y=2(x-1)2、 y=2(x-1)2+1 的图象,联系:将函数 y=2x的图象向右平移1个 单位, 就得 到 函数y=2(x-1)的图象; 再向上平移1个单位, 就得到函数y=2(x-1)+1的图象.,相同点: (1)图像都是抛物线, 形状相同, 开口方向相同. (2)都是轴对称图形. (3)顶点都是最低点. (4)在对称轴左侧,y值都随 x 值的增大而减小, 在对称轴右侧,y值都随
5、x值 的增大而增大.,不同点: (1)对称轴不同. (2)顶点不同. (3)最小值不相同.,的图像可以由,向上平移一个单位,向右平移一个单位,向右平移一个单位,向上平移 一个单位,先向上平移一个单位,再向右平移一个单位,或者先向右平移一个单位再向上平移一个单位而得到.,相同,不同,向上,向下,x=h,(h,k),h、k,归纳,一般地,抛物线y=a(xh)2k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)向右(左)平移,可以得到抛物线y=a(xh)2k.平移的方向、距离要根据h、k的值来决定.,向左(右)平移|h|个单位,向上(下)平移|k|个单位,y=ax2,y=a(xh)2,y
6、=a(xh)2+k,y=ax2,y=a(xh)2+k,向上(下)平移|k|个单位,y=ax2+k,向左(右)平移|h|个单位,y = ax2,y = ax2 + k,y = a(x - h )2,y = a( x - h )2 + k,上下平移 |k|个单位,左右平移 |h|个单位,上下平移 |k|个单位,左右平移 |h|个单位,结论: 一般地,抛物线 y = a(x-h)2+k与y = ax2形状相同,位置不同。,各种形式的二次函数的关系,抛物线y=a(xh)2+k有如下特点:,(1)当a0时, 开口向上;,当a0时,开口向下;,(2)对称轴是直线x=h;,(3)顶点是(h,k).,二次函数
7、y=a(x-h)2+k的图象和性质,抛物线,顶点坐标,对称轴,开口方向,增减性,最值,y=a(x-h)2+k(a0),y=a(x-h)2+k(a0),(h,k),(h,k),直线x=h,直线x=h,向上,向下,当x=h时,最小值为k.,当x=h时,最大值为k.,在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.,在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.,练习,向上,( 1 , 2 ),向下,向下,( 3 , 7),( 2 , 6 ),向上,直线x=3,直线x=1,直线x=3,直线x=2,(3, 5 ),y=3(x1)22,y
8、 = 4(x3)27,y=5(2x)26,1.完成下列表格:,2.请回答抛物线y = 4(x3)27由抛物线y=4x2怎样平移得到?,3.抛物线y =4(x3)27能够由抛物线y=4x2平移得到吗?,如何平移:,1抛物线的上下平移 (1)把二次函数y=(x+1)2的图像, 沿y轴向上平移个单位, 得到_的图像; (2)把二次函数_的图像, 沿y轴向下平移2个单位,得到y=x 2+1的图像.,考考你学的怎么样:,y=(x+1)2+3,y=x2+3,2抛物线的左右平移 (1)把二次函数y=(x+1) 2的图像, 沿x轴向左平移个单位, 得到_的图像; (2)把二次函数_的图像, 沿x轴向右平移2个
9、单位,得到y=x 2+1的图像.,y=(x+4)2,y=(x+2)2+1,3抛物线的平移: (1)把二次函数y=3x 2的图像, 先沿x轴向左平移个单位, 再沿y轴向下平移2个单位, 得到_的图像; (2)把二次函数_的图像, 先沿y轴向下平移2个单位, 再沿x轴向右平移3个单位, 得到y=-3(x+3) 22的图像.,y=3(x+3)2-2,y=-3(x+6)2,(-1,0),(-1,3),x=-1,7把二次函数y=4(x1) 2的图像, 沿x轴向 _ 平移_个单位,得到图像的对称轴是直线x=3. 8把抛物线y=3(x+2) 2,先沿x轴向右 平移2个单位,再沿y轴向下平移1个单位, 得到_
10、的图像 9把二次函数y=2x 2的图像,先沿x轴 向左平移个单位,再沿y轴向下平移2 个单位,得到图像的顶点坐标是_,右,2,y=-3x2-1,(-3,-2),10.如图所示的抛物线: 当x=_时,y=0; 当x0时, y_0; 当x在 _ 范围内时,y0; 当x=_时,y有最大值_.,3,0或-2,2 x0,-1,3,下课铃声就要响了,但是我们还有一件事情没有做,那就是在每节课结束时都要反思和总结这节课的收获和体会。 这节课你最大的收获是什么? 这节课你需要在课后再花时间研究的是什么? 你认为今天这节课最需要掌握的是什么?,1、教材14页习题26.1第5题2、同步导学75页课后提高3、预习二次函数y=a2+bx+c的图象,谢谢大家,再会!,作业,11、试分别说明将抛物线的图象通过怎样的平移得到y=x2的图象: (1) y=(x-3)2+2 ; (2)y=(x+4)25,12.与抛物线y=4x 2形状相同,顶点为(2,-3)的抛物线解析式为 ,先向左平移3个单位,再向下平移2个单位,先向右平移4个单位,再向上平移5个单位,y= - 4(x-2)2-3或y= 4(x-2)2-3,13.已知二次函数y=ax2+bx+c的图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度全国重点城市房地产团购优惠协议书3篇
- 2024年架子工程专项分包合同范本版B版
- 2024年度交通设施承包劳务合同范本2篇
- 建筑施工课程设计
- 2024年版二手房买卖居间协议典范版B版
- 2024年度城市固废处理设施建设运营合同3篇
- 2024版XX医院医疗废物处置合同模板3篇
- 幼教实训课程设计培训
- 2024年度技术咨询合同:技术顾问与咨询方之间的技术咨询服务协议3篇
- 幼儿园小暑创意课程设计
- 信息安全职业生涯规划
- 新能源技术的前沿研究与应用探索
- 装配式结构监理细则
- 工作无纸化总结汇报
- 初中美术八年级上册服装设计(全国一等奖)
- 导医接待与患者情绪管理
- 2024年医院口腔科护理带教计划
- 二年级科学上册跨学科项目化学习案例做一个小鸟餐厅
- 化工行业基础知识培训课件
- 新课标下小学美术课程设计
- 花卉 宿根花卉
评论
0/150
提交评论