版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、泰勒公式及其应用摘 要 文章简要介绍了泰勒公式及其几个常见函数的展开式,针对泰勒公式的应用讨论了九个问题,即应用泰勒公式求极限,证明不等式,判断级数的敛散性,证明根的唯一存在性,判断函数的极值,求初等函数的幂级数展开式,进行近似计算,求高阶导数在某些点的数值,求行列式的值.关键词 泰勒公式;极限;不等式;敛散性;根的唯一存在性;极值;展开式;近似计算;行列式. 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题
2、目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 预备知识定义2.1 若函数在存在阶导数,则有 (1)这里为佩亚诺型余项,称(1)f在点的泰勒公式.当=0时,(1)式变成,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2 若函数 在某邻域内为存在直至 阶的连续导数,则, (2)这里为拉格朗日余项,其中在与之间,称(2)为在的泰勒公式.当=0时,(2)式变成称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:.定理2.1(介值定理) 设函数 在闭区间 上连续,且 ,若为介于 与之间的任何实数,则至
3、少存在一点,使得.3 泰勒公式的应用3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限.分析:此为型极限,若用罗比达法求解,则很麻烦,这时可将和分别用泰勒展开式代替,则可简化此比式.解 由,得,于是.3.2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例3.2 当时,证明.证明 取,则带入泰勒公式,其中=3,得,其中.故当时,.3.3 利用泰勒公式判断级数的敛散性当级数的通项表达式是由不同类型函数式构成
4、的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.例3.3 讨论级数的敛散性.分析:直接根据通项去判断该级数是正向级数还是非正向级数比较困难,因而也就无法恰当选择判敛方法,注意到,若将其泰勒展开为的幂的形式,开二次方后恰与相呼应,会使判敛容易进行.解 因为,所以,所以故该级数是正向级数.又因为,所以.因为收敛,所以由正向级数比较判别法知原级数收敛.3.4 利用泰勒公式证明根的唯一存在性例3.4 设f(x)在上二阶可导,且,对, 证明: 在内存在唯一实根.分析:这里f(x)是抽象函数,直接讨论的根有困难,由题设f(x)在上二阶可导且,可考虑将f(x)在a点展开一阶泰勒公式
5、,然后设法应用戒指定理证明.证明 因为,所以单调减少,又,因此xa时,故f(x)在上严格单调减少.在a点展开一阶泰勒公式有由题设,于是有,从而必存在,使得,又因为,在上应用连续函数的介值定理,存在,使,由f(x)的严格单调性知唯一,因此方程在内存在唯一实根.3.5 利用泰勒公式判断函数的极值例3.5 (极值的第二充分条件)设在的某邻域内一阶可导,在处二阶可导,且,.(i)若,则在取得极大值.(ii) 若,则在取得极小值.证明 由条件,可得f在处的二阶泰勒公式.由于,因此.(*)又因,故存在正数,当时,与同号.所以,当时,(*)式取负值,从而对任意有,即在取得极大值.同样对,可得在取得极小值.3
6、.6 利用泰勒公式求初等函数的幂级数展开式利用基本初等函数的幂级数展开式,通过加减乘等运算进而可以求得一些较复杂的初等函数的幂级数展开式.例3.6 求的幂级数展开式.解 利用泰勒公式3.7 利用泰勒公式进行近似计算利用泰勒公式可以得到函数的近似计算式和一些数值的近似计算,利用麦克劳林展开得到函数的近似计算式为,其误差是余项.例3.7 计算Ln1.2的值,使误差不超过0.0001解 先写出f(x)=Ln(1+x)带拉格朗日型余项的麦克劳林展开式:,其中(在0与x之间).令,要使则取即可.因此当要求的算式不能得出它的准确值时,即只能求出其近似值,这时泰勒公式是解决这种问题的最好方法.例3.8 求的
7、近似值,精确到.解 因为中的被积函数是不可积的(即不能用初级函数表达),现用泰勒公式的方法求的近似值.在的展开式中以代替 x得逐项积分,得上式右端为一个收敛的交错级数,由其余项的估计式知3.8 利用泰勒公式求高阶导数在某些点的数值如果f(x)泰勒公式已知,其通项中的加项的系数正是,从而可反过来求高阶导数数值,而不必再依次求导.例3.9 求函数在x=1处的高阶导数.解 设x=u+1,则,在u=0的泰勒公式为,从而,而g(u)中的泰勒展开式中含的项应为,从g(u)的展开式知的项为,因此,.3.9 利用泰勒公式求行列式的值若一个行列式可看做x的函数(一般是x的n次多项式),记作f(x),按泰勒公式在
8、某处展开,用这一方法可求得一些行列式的值.例 3.10 求n阶行列式 D= (1)解 记,按泰勒公式在z处展开:, (2)易知 (3)由(3)得,.根据行列式求导的规则,有于是在处的各阶导数为, 把以上各导数代入(2)式中,有若,有,若,有.4 总结本文主要介绍了泰勒公式以及它的九个应用,使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识.,只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧.参考文献ex = 1+x+x2/2!+x3/3!+xn/n!+ ln(1+x)=x-x2/2+x3/3-+(-1)(k-
9、1)*(xk)/k(|x|1) sin x = x-x3/3!+x5/5!-+(-1)(k-1)*(x(2k-1)/(2k-1)!+。(-x) cos x = 1-x2/2!+x4/4!-+(-1)k*(x(2k)/(2k)!+ (-x) arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + (|x|1) arccos x = - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ) (|x|1) arctan x = x - x3/3 + x5/5 -(x1) sinh x = x+x3/3!+x5/5!+(-1)(k-1)*(x2k-1)/(2k-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025机械设备的买卖合同
- 洛阳理工学院《工科大学化学-物理化学(二)》2023-2024学年第一学期期末试卷
- 污水处理厂导向钻进施工合同
- 墙绘施工合同范本
- 教育培训机构劳务管理
- 食品企业财务健康检查
- 2024年动力煤进口清关共享成功之道!3篇
- 广西壮族自治区河池市2023-2024学年高一上学期1月期末考试数学试题(解析版)
- 医疗器械招投标管理规范
- 医药招投标项目招标文件编制
- 国家开放大学电大《建筑制图基础》机考三套标准题库及答案3
- 降低故障工单回复不合格率
- 可涂色简笔画打印(共20页)
- 灯光架介绍及使用说明
- 十一学校行动纲要
- GB 1886.6-2016 食品安全国家标准 食品添加剂 硫酸钙(高清版)
- 关于房屋征收及土地收储过程中的税收政策(仅供参考)
- 唯一住房补贴申请书(共2页)
- 单面多轴钻孔组合机床动力滑台液压系统课程设计
- 中医养生脾胃为先PPT文档
- 门窗工程成品保护方案(附图)
评论
0/150
提交评论