告别ITO导电玻璃触控面板发展之路无限宽广_第1页
告别ITO导电玻璃触控面板发展之路无限宽广_第2页
告别ITO导电玻璃触控面板发展之路无限宽广_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、告别ITO导电玻璃触控面板发展之路无限宽广投影式电容触控屏幕市场正在悄然发生变革。市场不断追求更纤薄、更高效能、更可靠且成本较低的触控式屏幕,但目前触控面板所使用的氧化铟锡(ITO)导电材料存在诸多局限性,因此未来将被各种替代材料所取代。 投影式电容触控屏幕市场,正在悄然发生变革。快速的产业发展不断提供更纤薄、更高效能、更可靠且成本较低的触控式屏幕。在这些发展中背后的主要动力是氧化铟锡(ITO),这种主要用于手机和平板电脑触控式屏幕的导电材料存在诸多局限性,因此将被替代材料所取代。 ITO受限小尺寸屏幕导电材料掀更新 ITO从未被广泛使用于大尺寸AV和kiosk的应用上,但有一些正在开发中的技

2、术将取代ITO,这些新技术将会被用于上述应用当中。 投影电容触控式技术变革背后的一个关键驱动因素是,转移至将触控功能整合到使用内嵌式技术的LCD面板本身,从而无需单独的触控式屏幕面板,亦称离散式触控面板。做到这一点后,就可生产出更容易整合的更薄更轻的触控装置。 光学效能及亮度,也可透过缩减LCD与使用者之间的距离和层数而获得改善。 但是,制造内嵌式触控式屏幕的流程仍朝向更完善的目标发展当中,因此它们在业界被广泛采用受到了限制。结果,ITO导体的离散投影式触控屏幕面板仍旧是主要被使用的技术,至少在智慧型手机、平板电脑及可穿戴式设备中仍是如此,但它随着显示尺寸增加超过20寸就会存在很多缺陷,主要是

3、因为其相对较高的电阻会妨碍效能,并使其成为不适合某些应用的材料。 关于有哪些导电材料可用于较大尺寸的触控式屏幕,目前有三种主要的材料技术处于领先地位:铜微线(CopperMicroWires)、银金属网格(SilverMetalMesh)和奈米银线(SilverNanoWire),还有其他三种:奈米碳管(Carbon Nanobud)、导电聚合物(Conductive Polymers)和石墨烯(Graphene),它们全都处于开发初期并可能在未来几年上市。本文将探讨前五种材料技术的四个主要参数:经济性、阻抗、可见度和可用性;还会探讨石墨烯,石墨烯处于开发初期,目前尚未市售。 考量经济因素同材

4、料成本大不同 考虑到触控式屏幕的成本时,关键问题包括初始加工成本及持久材料寿命要求等等。不需开模(光罩)而可直接写入基材的技术,基本上不需要加工,并可更便宜地进行小批量生产。若需要开模或其他加工,则会限制小批量生产不同尺寸能力的灵活度,但有潜力对标准尺寸提供较大批量的生产。 在加工方面,铜微线具有延展性优势。电极可以直接写入基材,不需雷射、开模/化学物质/蚀刻或加工。奈米银线可以透过雷射剥离法进行一定程度的客制,但还需要额外制程来将边界的导体连接至控制器。导电聚合物透过网版印刷应用起来相对简单,但必须在丝网印刷或在蚀刻、雷射处理之后,再作制作图样(Pattern)。 相比之下,银金属网格技术是

5、在材料来源上制作Pattern,因此须提前指定感测器的尺寸。这会让每个感测器设计产生1万2万美元的加工费用,具体取决于屏幕大小。碳奈米芽(Carbon NanoBud)的沉积程序很复杂,需使用奈米芽反应器(NanoBud Reactor),然后再使用雷射制图制程来制作电极。 制造成本的另一个关键因素是所需层数。铜微线可以绝缘,因此x和y电极可以在单层中形成。封装绝缘还可以防止材料氧化,但在暴露于高温高湿度下时会大大降低触控式屏幕的效能。奈米银线、金属网格和导电聚合物传感器结构一般需要两层或多层来绝缘(x和y)导体,从而增加单层设计上的材料内容。碳奈米芽也是一种两层技术。另外还必须小心防止湿气进

6、入材料,否则可能导致上述氧化及触控式屏幕故障。 15至30低阻抗铜微线实现大尺寸触控屏幕 触控式屏幕阻抗是决定触控灵敏度或讯噪比(SNR)的一个关键因素。较高电阻材料会限制流经导体的电流量,使其更难正确地找出,来自显示屏幕、电源或其他周边电子产品周围环境干扰(EMI)产生的误触控事件。显然,这一阻抗对较大尺寸触控式屏幕的影响更大,特别是在需要多点触控、防误触和近距感测(在手指实际与屏幕接触前识别触控)等功能时。 如上所述,ITO因其相对高的阻抗,每平方约100而仅限用于较小的触控式屏幕;因此,大多数使用此材料的触控式屏幕小于约22寸,超出此尺寸将存在显着的效能限制。 相较于PET薄膜基材上每平

7、方约30-50,奈米银线具有比ITO更好的电阻,使用此技术的投影电容触控式传感器可扩展至约42寸,不过超出此尺寸,依旧将限制触控效能。 银金属网格具则有每平方约15至30的较低电阻,因此能用于尺寸达约65寸的触控式屏幕。铜微线提供每平方约5或更低的最低电阻,并可用于建立尺寸远超100寸的巨大触控屏幕。 另外,极低电阻还提供最佳的讯噪比,使触控式屏幕能侦测对很厚的面板玻璃,甚至是穿戴手套时进行的触控,而无须在高电压下驱动电子装置或使用多个连接控制器并排显示屏幕,替代材料技术若使用这两种巧妙方法,便可实现大尺寸触控式屏幕。 引入适当材料屏幕面板产生出色可见度 所有离散式面板投影电容技术,包括在使用

8、者和屏幕之间,引入一定的材料元素,以对图像产生无论多小,但一定存在的光学差别,尤其是在关闭显示时,透过采用铜微线技术,建立的10um导体网格是可见的。 也就是说,光透射性很出色,并且在运用任何抗反射处理前,处于90%的范围内。相比之下,奈米银线和银金属网格技术,可以建立可见度略低的导电轨,其为5-10um范围的金属网格;然而,奈米线和导电聚合物涂层,则可在整个屏幕上,产生轻微的偏色或蒙胧感,以及约有85%的透光度。 新技术成主流暴露户外为一大挑战 少数专业制造商生产铜微线触控式传感器已近20年,该传感器是一款成熟的投影电容触控式技术,适用于严酷环境中的大尺寸屏幕。过去几年来,银金属网格和银线触

9、控式技术已快速成为主流,其中,许多制造商负责安装必要印刷及雷射制作Pattern设备。在触控式屏幕产业,这两种技术相对新颖,意味着它们的长期可靠性尚未证实,尤其是关于在暴露于户外颇具挑战性的应用中的温度及湿度下,其电阻及触控效能会如何变化。 具导体潜力石墨烯适作电容屏幕材料 即将到来的是一种可能改变游戏规则的新型触控式屏幕材料技术:采用石墨烯的形式。石墨烯最初于2004年在曼彻斯特大学被发现,此后有陆续发布关于其强度、透明性和导电性的可喜成果,但开发仍处于起步阶段。 石墨烯沉积为一个原子厚度的碳分子,将类似的低电阻结合到铜微线,具有不可见导体的潜力。然而,尽管具有适合作为投影电容触控式屏幕材料的潜力,但这种令人兴奋的新技术还适合其他许多应用,例如水净化、电池和太阳能电池;大多数开发商目前仍将工作重点放在这些方面,在开发路线图上,触控式屏幕使用率要低得多。 总而言之,投影电容触控式屏幕并不存在完美的导电材料,设计师应不断寻找效能、光学、耐用性、可扩展性和可靠性的最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论