下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、17、1变量与函数第一课时 变量与函数教学目标 使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义,能应用方程思想列出实例中的等量关系。教学过程一、由下列问题导入新课 问题l、右图(一)是某日的气温的变化图 看图回答:1这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗? 2这一天中,最高气温是多少?最低气温是多少? 3这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低? 从图中我们可以看出,随着时间t(时)的变化,相应的气温T()也随之变化。 问题2 一辆汽车以30千米时的速度行驶,行驶的路程为
2、s千米,行驶的时间为t小时,那么,s与t具有什么关系呢? 问题3 设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系问题4 收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的下面是一些对应的数:波长l(m)30050060010001500频率f(kHz)1000600500300200 同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课 1常量和变量 在上述两个问题中有几个量?分别指出两个问题中的各个量? 第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化 第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值
3、是变量,而速度30千米/时,是保持不变的量是常量路程随着时间的变化而变化。 第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化 第4个问题中的l与频率f是变量而它们的积等于300000,是常量 常量:在某一变化过程中始终保持不变的量,称为常量 变量:在某一变化过程中可以取不同数值的量叫做变量 2函数的概念 上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数) 在上述的2个问题中,s30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因
4、变量(s是t的函数)。 在上述的第3个问题中,V2R2,给出变量R的一个值,就可以得到变量V惟一值与之对应,R是变量,V因变量(V是R的函数) 在上述的第4个问题中,lf300000,即l,给出一个f的值,就可以得到变量l惟一值与之对应,f是自变量,l因变量(l是f的函数)。函数的概念:如果在个变化过程中;有两个变量,假设X与Y,对于X的每一个值,Y都有惟一的值与它对应,那么就说X是自变量,Y是因变量,此时也称 Y是X的函数 要引导学生在以下几个方面加对于函数概念的理解 变化过程中有两个变量,不研究多个变量;对于X的每一个值,Y都有唯一的值与它对应,如果Y有两个值与它对应,那么Y就不是X的函数
5、。例如y2x 3表示函数的方法 (1)解析法,如问题2、问题3、问题4中的s30t、V=2 R3、l,这些表达式称为函数的关系式, (2)列表法,如问题4中的波长与频率关系表;(3)图象法,如问题l中的气温与时间的曲线图三、例题讲解例1用总长60m的篱笆围成矩形场地,求矩形面积S(m2)与边l(m)之间的关系式,并指出式中的常量与变量,自变量与函数。例2下列关系式中,哪些式中的y是x的函数?为什么?(1)y3x2 (2)y2x (3)y3x2x5四、课堂练习课本第26页练习的第1、2,3题, 五、课堂小结关于函数的定义的理解应注意两个方面,其一是变化过程中有且只有两个变量,其二是对于其中一个变
6、量的每一个值,另一个变量都有惟一的值与它对应对于实际问题,同学们应该能够根据题意写出两个变量的关系,即列出函数关系式。六、作业 课本第28页习题18.1第1、2题。七、教后记第二课时 变量与函数教学目标使学生进一步理解函数的定义,熟练地列出实际问题的函数关系式,理解自变量取值范围的含义,能求函数关系式中自变量的取值范围。教学过程 一、复习1填写如右图(一)所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向加数用y表示,试写出y关于x的函数关系式。2如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式 3如图(三),等腰直角三角形A
7、BC边长与正方形MNPQ的边长均为l0cm,AC与MN在同一直线上,开始时A点与M点重合,让ABC向右运动,最后A点与N点重合。试写出重叠部分面积y与长度x之间的函数关系式二、求函数自变量的取值范围 1实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。 从右边的分析可以看出,第n排的 排数 座位数 座位 l 18一方面可以用18(n1)表 21813182 示,另一方面可以用m表示,所以
8、m18(n1) n 18(n1)n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1n30的整数或0n31的整数。请同学们试着写出上面第2、3两个问题中自变量的取值范围。 2用数学式子表示的函数的自变量取值范围例1求下列函数中自变量x的取值范围 (1)y=3xl (2)y2x27 (3)y= (4)y= 分析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,(x2)必须不等于0式子才有意义,对于第(4)题,(x2)必须是非负数式子才有意义 3函数值 例2在上面的练习(3)中,当MA1cm时,重叠部分的面积是多少?请同学们求一求在例1中当x=5时各个函数的函数值三、课堂练习课本第28页练习的第1、2、3题四、小结通过本节课的学习,一方面,我们进一步认识了如何列函数关系式,对于几何问题中列函数关系式比较困难,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业会议场地租约
- 品牌代加工合同模板
- 上海2014购房合同模板
- 法人与员工合同模板
- 卷纸销售合同模板
- 铝板幕墙项目质量控制方案
- 企业实习生项目合作方案
- 合作办公司合同模板
- 广州湘菜加盟合同模板
- 人才引合同模板
- 社会学职业生涯规划书
- 人教部编版三年级上册语文【选择题】专项复习训练练习100题
- 学做小小按摩师(课件)全国通用三年级上册综合实践活动
- 100个细思极恐海龟汤及答案
- 社团活动经费预算申请表
- 装配式建筑精装施工方案
- 2022-2023学年福建省福州市福清市闽教版五年级上学期期中练习英语试卷(含听力音频)
- 经营范围登记规范表述目录(试行)(V1.0.2版)
- 生活区消防自查记录表
- 2024届广东省深圳市宝安区宝安中学物理九上期中质量跟踪监视模拟试题含解析
- 制图员(五级)技能理论考试复习题库(含答案)
评论
0/150
提交评论